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Abstract
English. Several textual inference tasks
rely on kernel-based learning. In par-
ticular Tree Kernels (TKs) proved to be
suitable to the modeling of syntactic and
semantic similarity between linguistic in-
stances. In order to generalize the meaning
of linguistic phrases, Distributional Com-
positional Semantics (DCS) methods have
been defined to compositionally combine
the meaning of words in semantic spaces.
However, TKs still do not account for
compositionality. A novel kernel, i.e.
the Compositional Tree Kernel, is pre-
sented integrating DCS operators in the
TK estimation. The evaluation over Ques-
tion Classification and Metaphor Detec-
tion shows the contribution of semantic
compositions w.r.t. traditional TKs.

Italiano. Sono numerosi i problemi di
interpretazione del testo che beneficiano
dall’applicazione di metodi di apprendi-
mento automatico basato su funzioni ker-
nel. In particolare, i Tree Kernel (TK)
sono applicati alla modellazione di met-
riche di similaritá sintattica e semantica
tra espressioni linguistiche. Allo scopo
di generalizzare i significati legati a sin-
tagmi complessi, i metodi di Distributional
Compositional Semantics combinano al-
gebricamente i vettori associati agli ele-
menti lessicali costituenti. Ad oggi i mod-
elli di TK non esprimono criteri di compo-
sizionalitá. In questo lavoro dimostriamo
il beneficio di modelli di composizionalitá
applicati ai TK, in problemi di Question
Classification e Metaphor Detection.

1 Introduction
Tree Kernels (TKs) (Collins and Duffy, 2001)
are consolidated similarity functions used in NLP

for their ability in capturing syntactic informa-
tion directly from parse trees and used to solve
complex tasks such as Question Answering (Mos-
chitti et al., 2007) or Semantic Textual Similar-
ity (Croce et al., 2012). The similarity between
parse tree structures is defined in terms of all
possible syntagmatic substructures. Recently, the
Smoothed Partial Tree Kernel (SPTK) has been
defined in (Croce et al., 2011): the semantic in-
formation of the lexical nodes in a parse tree en-
ables a smoothed similarity between structures,
which are partially similar and whose nodes can
differ but are nevertheless related. Semantic simi-
larity between words is evaluated in terms of vec-
tor similarity in a Distributional Semantic Space
(Sahlgren, 2006; Turney and Pantel, 2010; Baroni
and Lenci, 2010). Even if achieving higher per-
formances w.r.t. traditional TKs, the main limita-
tions of SPTK are that the discrimination between
words is delegated only to the lexical nodes and
semantic composition of words is not considered.

We investigate a kernel function that exploits se-
mantic compositionality to measures the similarity
between syntactic structures. In our perspective
the semantic information should be emphasized
by compositionally propagating lexical informa-
tion over an entire parse tree, making explicit the
head/modifier relationships between words. It en-
ables the application of Distributional Composi-
tional Semantic (DCS) metrics, that combine lexi-
cal representations by vector operator into the dis-
tributional space (Mitchell and Lapata, 2008; Erk
and Pado, 2008; Zanzotto et al., 2010; Baroni and
Lenci, 2010; Grefenstette and Sadrzadeh, 2011;
Blacoe and Lapata, 2012; Annesi et al., 2012),
within the TKs computation. The idea is to i) de-
fine a procedure to mark nodes of a parse tree that
allows to spread lexical bigrams across the tree
nodes ii) apply DCS smoothing metrics between
such compositional nodes iii) enrich the SPTK for-
mulation with compositional distributional seman-
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Figure 1: Lexical centered tree of the sentence “What in-
strument does Hendrix play?”

tics. The resulting model has been called Compo-
sitional Smoothed Partial Tree Kernel (CSPTK).
The entire process of marking parse trees is de-
scribed in Section 2. Therefore, in Section 3
the CSPTK is presented. Finally, in Section 4,
the evaluations over Question Classification and
Metaphor Detection tasks are shown.

2 Explicit compositions in Parse Trees
Compositional semantic constraints over a tree
kernel computation can be applied when syn-
tagms corresponding to nodes are made explicit.
Given the question “What instrument does Hen-
drix play?” and its dependency structure, the cor-
responding syntactic structure is shown in Figure
1 in terms of a Lexically Centered Tree (LCT),
as in (Croce et al., 2011). Nodes are partitioned
into: lexical nodes in terms of non-terminals
〈ln::posn〉, such as instrument::n, where l is the
lemma of the token and pos the part-of-speech;
syntactic nodes, i.e. children of each lexical node
which encodes a dependency function d ∈ D (e.g.
PREPOF ) and the pos-tag of the parent (e.g. NN).

In order to introduce lexical compositionality to
these syntactic representations, a mark-up process
is introduced, enabling the compositional exten-
sion of the tree kernel. Each link between two non-
terminal nodes in a LCT representation reflects a
dependency relation d, encoded by the child of
the lowest non-terminal node. For example, the
dependency between the node instrument::n and
its parent node play::v is of type dobj. Thus,
semantic compositionality is introduced in terms
of a head/modifier pair (h,m) over non-terminal
nodes, where lexical head is always the upper
node. Every non-terminal node is now marked as

〈dh,m, 〈lh :: posh, lm :: posm〉〉 (1)
Figure 2 shows a fully compositionally labeled
tree, called Compositional Lexically Centered
Tree (CLCT), for the sentence whose unlabeled
version has been shown in Figure 1. Now nodes
are partitioned so that: non-terminal nodes repre-
sent compositional lexical pairs (h,m) marked
as in Equation 1: notice that the modifier is miss-
ing in the root node; dependency functions

(dobj) and POS-Tags (VBZ) are encoded in
the terminal nodes as in the original LCT; lexi-
cal nodes, e.g. play::v, are repeated as terminal
nodes, in order to reduce data sparseness that may
be introduced by considering only compositional
compounds. A DCS model can be adopted, allow-
ing to estimate an expressive similarity function
between head-modifier pairs (h1,m1), (h2,m2)
within the resulting kernel. In (Mitchell and La-
pata, 2008) three general classes of compositional
models have been defined: a linear additive model
~p = A~u + B~v; a multiplicative model ~p =
C~u~v and the dilation model ~pd = (~u · ~u)~v +
(λ− 1)(~u · ~v)~u. A and B are weight matrices; C
is a weight tensor that project lexical vectors ~u and
~v onto the space of ~p, i.e. the vector resulting from
the composition; eventually, dilation is an asym-
metric function where ~u can be used to dilate ~v,
and viceversa according with a dilation factor λ.
Another compositional model adopted here is the
so-called Support Subspace, proposed in (Annesi
et al., 2012), which assumes that a composition
is expressed by projecting vectors into subspaces.
A projection reflects a selection function over the
set of semantic features shared in the (h,m) com-
pound. A subspace local to (h,m) can be found
such that only the space dimensions specific to its
meaning are selected. Support Subspaces seem
very effective for simple syntactic structures by
capturing bi-gram semantics, but they are not sen-
sitive to complex linguistic structures.

3 The Compositional Smoothed Partial
Tree Kernel

A Tree Kernel function is a function
TK(T1, T2) =

∑
n1∈NT1

∑
n2∈NT2

∆(n1, n2),

where T1 and T2 are parse trees, while NT1 and
NT2 are the sets of the T1’s and T2’s nodes. The
∆ function recursively computes the amount of
similarity between tree structures in terms of
the similarity among substructures. The type of
considered fragments determines the expressive-
ness of the kernel space and different tree kernels
are characterized by different choices. In early
models, e.g. (Collins and Duffy, 2001), lexical
generalization has been neglected in the recursive
matching, so that only exact matching between
node labels was given a weight higher than 0.
Lexical contribution was proposed by (Croce
et al., 2011), in the so called Smoothed Partial
Tree Kernel (SPTK). In SPTK, the TK extends
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Figure 2: Compositional Lexically Centered Tree (CLCT) of the sentence “What instrument does Hendrix play?”

the similarity between tree structures allowing a
smoothed function of node similarity σ. It allows
to measure the similarity between syntactic tree
structures, which are semantically related even
when lexical nodes differ. This is achieved by the
following formulation of the function ∆:
∆σ(n1, n2)=µλσ(n1, n2),where n1 and n2 are leaves, else

∆σ(n1, n2)=µσ(n1, n2)
(
λ2 +

∑
~I1,~I2,l(~I1)=l(~I2)

(2)

λd(
~I1)+d(~I2)

l(~I1)∏
j=1

∆σ(cn1(~I1j), cn2(~I2j))
)

In Eq. 2 , ~I1j represents the sequence of subtrees,
dominated by node n1, that are shared with the
children of n2 (i.e. ~I2j ) as all other non-matching
substructures are neglected. The semantic similar-
ity between nodes is measure by σ(n1, n2).

One main limitation of SPTK is that σ does
not consider compositional interaction between
words. Given the phrases “to play sport” and
“to play instrument”, the SPTK relies only on a
unique meaning for play, ignoring the composi-
tional role of each modifier. Let us consider the
application of the SPTK on the tree shown in
Figure 2. When estimating the similarity with a
tree derived from sentences such as “What instru-
ment does Hendrix play?” or “What sport does
Bolt play?”, the kernel will estimate the similarity
among all nodes. Then, the σ function in Equation
2 would not be able to exploit the different senses
of the verb play, as a traditional DCS model would
provide a unique vector representation.

The Compositional Smoothed Partial Tree Ker-
nel (CSPTK) tries to overcome this limitation
by measuring the similarity between constituency
structures in which lexical compositionality have
been made explicit. DCS operators are employed
within the CSPTK computation. The core nov-
elty of the CSPTK is the new estimation of σ as
described in Algorithm 1. For the lexical nodes
the kernel σLEX is applied, i.e. the cosine sim-
ilarity between words sharing the same pos-tag.
Moreover, the other non-lexical nodes contribute
according to a strict matching policy: they pro-
vide full similarity only when the same pos, or

Algorithm 1 στ (nx, ny, lw) Compositional estimation of
the lexical contribution to semantic tree kernel
στ ← 0,
if nx = 〈lexx::pos〉 and ny = 〈lexy::pos〉 then
στ ← σLEX(n1, n2)

end if
if (nx = pos or nx = dep) and nx = ny then
στ ← lw

end if
if nx =

〈
dh,m, 〈lix〉

〉
and ny =

〈
dh,m, 〈liy〉

〉
then

/*Both modifiers are missing*/
if lix = 〈hx::pos〉 and liy = 〈hy::pos〉 then
στ ← σCOMP

(
(hx), (hy)

)
= σLEX(nx, ny)

end if
/*One modifier is missing*/
if lix = 〈hx::posh〉 and liy = 〈hy::posh,my::posm〉
then
στ ← σCOMP

(
(hx, hx), (hy,my)

)
else

/*General Case*/
στ ← σCOMP

(
(hx,mx), (hy,my)

)
end if

end if
return στ

dependency, is matched and 0 otherwise. The fac-
tor lw is here adopted to reduce the contribution
of non-lexical nodes. The novel part of Algo-
rithm 1 is introduced with the similarity compu-
tation over compositional nodes. In order to acti-
vate the similarity function between non-terminal
nodes, they must have the same dh,m. In this case
a DCS metric can be applied between the involved
(h,m) compounds: the lexical information related
to pairs are checked and if their respective heads
and modifiers share the corresponding POS, a com-
positional similarity function is applied.If a mod-
ifier is missing, e.g. the compounds are (hx, ∗)
and (hy,my), the virtual pair (hx, hx) and the pair
(hy,my) are used; if both modifiers are missing,
e.g. the compounds are (hx, ∗) and (hy, ∗), the
σLEX , i.e. the cosine similarity between word
vectors, is adopted.

4 Experimental Evaluation
We evaluated CSPTK w.r.t. two inference tasks,
i.e. Question Classification (QC) and Metaphor
Detection (MI). Texts are processed with Stanford
CoreNLP and compositional trees are generated as
discussed in Section 2. The lexical similarity func-
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tion is derived from a co-occurrence Word Space,
acquired through the distributional analysis of the
UkWaC corpus, as in (Croce et al., 2011).
CSPTK in Question Classification. In the QC
task, the reference corpus is the UIUC dataset
(Li and Roth, 2002), including 5,452 questions
for training and 500 questions for test, organized
in six coarse-grained classes. SVM training has
been carried out over the UIUC by applying (i) the
PTK and SPTK kernels over the LCT representa-
tion of the questions and (ii) the compositional tree
kernels (CSPTKs), according to different compo-
sitional similarity metrics σCOMP , to the CLCT
representation. For learning our models, we used
an extension of the SVM-LightTK software. Dif-
ferent compositional kernels are distinct according
to the adopted compositionality metrics: simple
additive model (Mitchell and Lapata, 2010), de-
noted by a “+” superscript with α = β; the point-
wise product operator, denoted by a “ · ” super-
script; the dilation operator model, denoted by a
d superscript with λ = 1; the support subspace
model of (Annesi et al., 2012), denoted by SS .

Kernel Accuracy Std. Dev.
BoW 86.3% ±0.3%
PTKLCT 90.3% ±1.8%
SPTKLCT 92.2% ±0.6%
CSPTK+

CLCT 95.6% ±0.6%
CSPTK·

CLCT 94.6% ±0.5%
CSPTKdCLCT 94.2% ±0.4%
CSPTKssCLCT 93.3% ±0.7%

Table 1: Results in the Question Classification task

In Table 1 the accuracy achieved by the differ-
ent systems is reported as the percentage of sen-
tences correctly assigned to the proper question
class. As a baseline, a simple bag-of-word model
(i.e. BoW) is also computed: it represents ques-
tions as binary word vectors and it results in a ker-
nel measuring the lexical overlap. The introduc-
tion of lexical semantic information in tree kernel
operators, such as in SPTK vs. PTK, is benefi-
cial thus confirming the outcomes of (Croce et al.,
2011). CSPTKs seem to make an effective use
of the lexical semantic smoothing as they all out-
perform the non-compositional counterparts. In
particular CSPTK+

CLCT outperforms all the other
compositional operators. Eventually, the error re-
duction ranges between 12% and 42%.
CSPTK for Metaphor Detection. For the second
experiment we choose the annotated Metaphor
corpus by (Hovy et al., 2013). The task consists to
classify the target words use as literal or metaphor-

ical. The dataset consists of 3,872 sentences di-
vided into training, development, and test sets, us-
ing a 80-10-10 split. In Table 2, the accuracy
achieved by the different systems is reported. The
complexity of the task is confirmed by the low in-
ter annotator agreement achieved over the dataset,
i.e. 0.57. As detecting metaphor depends on the
deep interaction among words, it seems reason-
able that the models using only syntactic informa-
tion (i.e. PTK) or distributional words in isolation
(i.e. BoW) or both (i.e. SPTK) achieve poor per-
formances. The method proposed in (Srivastava
et al., 2013) confirms the impact of a proper se-
mantic generalization of the training material. It
reaches the SoA by applying a walk-based graph
kernel that generalizes the notion of tree kernel as
a general framework for word-similarity, and in-
corporates distributed representations in a flexible
way. In our test the syntactic information together
with the compositional smoothing, activated by
the compositional nodes of the CSPTK, make also
an effective use of the lexical semantic smoothing
and outperform all the non-compositional coun-
terparts, achieving an accuracy of 75.3%. Even
though CSPTK does not outperform (Srivastava
et al., 2013), it represents a completely automatic
method, largely applicable to different tasks.

Kernel Accuracy
BoW 71.3%
PTKLCT 71.6%
SPTKLCT 71.0%
CSPTK+

CLCT 72.4%
CSPTKssCLCT 75.3%
(Srivastava and Hovy, 2013) 76.0%

Table 2: Results in the Metaphor Detection task

5 Conclusions
In this paper, a novel kernel function has been pro-
posed in order to exploit Distributional Compo-
sitional operators within Tree Kernels. The pro-
posed approach propagates lexical semantic infor-
mation over an entire tree, by building a Com-
positionally labeled Tree. The resulting Compo-
sitional Smoothed Partial Tree Kernel measures
the semantic similarity between complex linguis-
tic structures by applying metrics sensible to dis-
tributional compositional semantics. Empirical re-
sults in the Question Classification and Metaphor
Detection tasks demonstrate the positive contribu-
tion of compositional information for the general-
ization capability within the proposed kernel.
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