
Making Latent SVMstruct Practical for Coreference Resolution

Iryna Haponchyk1 and Alessandro Moschitti2,1
1Department of Information Engineering and Computer Science, University of Trento,

2Qatar Computing Research Institute
iryna.haponchyk@unitn.it, amoschitti@gmail.com

Abstract
English. The recent work on coreference
resolution has shown a renewed interest
in the structured perceptron model, which
seems to achieve the state of the art in
this field. Interestingly, while SVMs are
known to generally provide higher accu-
racy than a perceptron, according to pre-
vious work and theoretical findings, no re-
cent paper currently describes the use of
SVMstruct for coreference resolution. In
this paper, we address this question by
solving some technical problems at both
theoretical and algorithmic level enabling
the use of SVMs for coreference resolu-
tion and other similar structured output
tasks (e.g., based on clustering).

Italiano. Ricerca recente sulla risoluzione
delle coreferenze linguistiche ha mostrato
un rinnovato interesse per l’algoritmo del
percettrone strutturato, il quale sembra es-
sere lo stato dell’arte per questa disci-
plina. È interessante notare che, men-
tre l’esperienza passata e i risultati teorici
mostrano che le SVMs sono piú accu-
rate del percettrone, nessun articolo re-
cente descrive l’uso di SVMstruct per la
risoluzione di coreferenze. In questo ar-
ticolo, si prova a dare una risposta a tale
domanda, risolvendo alcuni problemi tec-
nici, sia a livello teorico che algoritmico,
cosı́ consentendo l’utilizzo delle SVMs per
la risoluzione delle coreferenze e altri
problemi che richiedono l’uso di funzioni
di output strutturato (e.g., basati su clus-
tering).

1 Introduction

Coreference resolution (CR) is a complex task,
in which document phrases (mentions) are parti-

tioned into equivalence sets. It has recently been
approached by applying learning algorithms oper-
ating in structured output spaces (Tsochantaridis
et al., 2004). Considering the nature of the prob-
lem, i.e., the NP-hardness of finding optimal men-
tion clusters, the task has been reformulated as a
spanning graph problem.

First, Yu and Joachims (2009) proposed to (i)
represent all possible mention clusters with fully
connected undirected graphs and (ii) infer docu-
ment mention cluster sets by applying Kruskal’s
spanning algorithm (Kruskal, 1956). Since the
same clustering can be obtained from multiple
spanning forests (there is no one-to-one corre-
spondence), these latter are treated as hidden or
latent variables. Therefore, an extension of the
structural SVM – Latent SVMstruct (LSVM) – was
designed to include these structures in the learning
procedure.

Later, Fernandes et al. (2012) presented their
CR system having a resembling architecture. They
do inference on a directed candidate graph using
the algorithm of Edmonds (1967). This modeling
coupled with the latent structured perceptron de-
livered state-of-the-art results in the CoNLL-2012
Shared Task (Pradhan et al., 2012).

To the best of our knowledge, there is no pre-
vious work on a comparison of the two methods,
and the LSVM approach of Yu and Joachims has
not been applied to the CoNLL data. In our work,
we aim, firstly, at evaluating LSVM with respect
to the recent benchmark standards (corpus and
evaluation metrics defined by the CoNLL-shared
task) and, secondly, at understanding the differ-
ences and advantages of the two structured learn-
ing models. In a closer look at the LSVM imple-
mentation1, we found out that it is restricted to in-
ference on a fully-connected graph. Thus, we pro-
vide an extension of the algorithm enabling to op-

1http://www.cs.cornell.edu/˜cnyu/
latentssvm/

203

10.12871/CLICIT2014139



erate on an arbitrary graph: this is very important
as all the best CR models exploit heuristics to pre-
filter edges of the CR graph. Therefore our modi-
fication of LSVM allows us to use it with powerful
heuristics, which greatly contribute to the achieve-
ment of the state of the art. Regarding the compar-
ison with the latent perceptron of Fernandes et al.
(2012), the results of our experiments provide ev-
idence that the latent trees derived by Edmonds’
spanning tree algorithm better capture the nature
of CR. Therefore, we speculate that the use of this
spanning tree algorithm within LSVM may pro-
duce higher results than those of the current per-
ceptron algorithm.

2 Structured Perceptron vs. SVMstruct

In this section, we briefly describe the basics of
the widely known structured prediction frame-
work. Structured learning algorithms aim at
discovering patterns that relate input to complex
(thus generally structured) output. Formally,
they seek for a mapping f : X × Y → R over
a combined feature space of input variables X
and output variables Y , where predictions are
derived by finding the argmax

y∈Y
f(x,y). The func-

tion f(x,y) is often assumed to be linear with
respect to Φ(x,y), which is a joint feature vector
representing an input example together with its
associated output. In other words, we have a linear
function of the type: f(x,y) = 〈w,Φ(x,y). The
structured perceptron learning consists in iterating
over the entire training set {(xi,yi)}i=1,..,l of the
following operations: (i) find the optimal output:

ŷ = argmax
y∈Y

f(xi,y)

(given the current weight w) and (ii) update w as
follows: w← w + Φ(xi,yi)− Φ(xi, ŷ)
when prediction errors occur, i.e., ŷ 6= ỹ, where
ỹ is the gold standard output. The structured per-
ceptron algorithm dates back to the early work of
Collins (2002), who provided its theoretical guar-
antees and proof of convergence.

SVMs outperform perceptron in terms of
generalization accuracy. They were extended
by Tsochantaridis et al. (2004) to deal with
structured output spaces. In a standard form, the
optimization problem is formulated as

min
w

1
2‖w‖

2

s.t.∀i,∀y ∈ Yryi:〈w,Φ(xi,yi)−Φ(xi,y)〉 ≥ 1.
The set of margin constraints in the above formu-
lation may be exponentially large or even infinite

when Y , for example, is the space of subtrees in
syntactic parsing or the space of strings in the se-
quence labeling task. However, it was shown that
using the sparseness of Y and structure and depen-
dencies in Φ, one can drastically reduce the num-
ber of constraints to be examined, which makes
the optimization feasible. A general SVM algo-
rithm for predicting structured outputs, as well
as its instantiations for several complex predic-
tion tasks, was implemented in SVMstruct and made
publicly available2.

CR is essentially modelled as a clustering prob-
lem. Considering a clustering of a document men-
tion set a desired output of a predictor, one can
approach the task with a learning algorithm oper-
ating in the output space Y of all possible cluster-
ings. Further, we describe two structured learning
methods, applied to CR, that were able to over-
come the intractability of search for an optimal
clustering in Y .

3 Corereference resolution with SVMs
Latent SVMstruct was introduced by Yu and
Joachims (2009), who construct an undirected
graph for each document (Figure 1b). The authors
reformulate the structural SVM of Tsochantaridis
et al. (2004) introducing latent variables into a
learning procedure. In the LSVM formulation, an
input-output example is, thus, described by a tuple
(x,y,h), where x is a document mention set, y is
a corresponding clustering and h is a latent vari-
able. h is consistent with y in a way that for train-
ing examples, h contains only links between men-
tion nodes that are coreferent according to y. For
test examples a clustering y is, instead, imposed
by an h automatically generated by the classifica-
tion algorithm. The joint feature vector decom-
poses along the edges of h:

Φ(x,y,h) =
∑
e∈h

φ(e).

The learning procedure involves running
Kruskal’s algorithm for finding a maximum
spanning forest of a graph containing all possible
links between mentions. The resulting spanning
forest, in which each connected component
corresponds to a separate cluster (in Figure 1b
clusters are circled), is a desired h.

The LSVM implementation provided by the au-
thors follows the SVMstruct API paradigm. In our

2It is a software package for implementing structural
SVMs available at http://svmlight.joachims.
org/svm_struct.html

204



(a)

(b)

Figure 1: Graphical models employed in struc-
tured learning algorithms

experiments, we analysed one of the LSVM spe-
cializations that is designed for CR. The infer-
ence by Kruskal’s spanning algorithm is done on
a fully-connected graph of mention pair relations.
However, a large portion of mention pair links ap-
parently do not convey significant information be-
cause they connect non-coreferring mentions, e.g.,
very distant mentions are very improbable to core-
fer. Thus, it has been a common practice in coref-
erence research to adopt a preliminary strategy for
mention pair filtering, e.g., Fernandes et al. (2012)
preprocess the data by applying a set of linguis-
tic filters (the so called sieves). This issue be-
comes crucial in the LSVM setting as Kruskal’s al-
gorithm includes sorting all document edges (this
number is exponential in the number of mentions)
by their weight. In our work, we intended to en-
able the LSVM implementation to operate on non-
complete candidate graphs, i.e., whose edges have
been filtered by some strategies.

4 Coreference Resolution with Latent
Perceptron

The latent perceptron of Fernandes et al. (2012)
is related to the earlier work of Yu and Joachims
(2009) but they model CR as a spanning tree prob-
lem. They introduce document trees (Figure 1a),
in which nodes represent mentions and edges – re-
lations between them, plus an additional root node.

The subtrees directly connected to the root node of
such a tree form clusters. To obtain this tree, Ed-
monds’ algorithm is run on a directed candidate
graph of document mention relations. Such trees
are implicit in data and hence are called latent.
This modeling is incorporated into a latent percep-
tron framework in its loss-augmented formulation.
It achieved the best results in the CoNLL 2012-
Shared Task (Pradhan et al., 2012).

Edmonds’ algorithm iterates over the tree nodes
and chooses the best incoming edge (edge of max-
imum weight). By that means, the best antecedent
is chosen for each mention (or no antecedent if the
chosen edge starts in the root node). This strategy
thereby fits the nature of the CR task very well.

5 Adapting Latent SVMstruct to filtered
data

As mentioned before, we intend to enable the use
of LSVM on filtered graphs, i.e., when some can-
didate edges between mention nodes are missing.
The theoretical description of the algorithm does
not impose any limitation on the use of partial
graphs. However, the provided implementation re-
quires fully-connected graphs. Indeed, a bare ex-
ecution of LSVM on the partial data results into a
low performance score (see Table 1).

In the implementation, each mention is as-
signed with an ID of the cluster it be-
longs to, which is chosen according to the
rule clusterID(mi) = mini{mi ∪ {mj :
∃ a positive edge between mi and mj}}, where
m are the IDs of the mentions. Let us sup-
pose that we have a cluster with 4 mentions
K = {m1,m2,m3,m4} (mentions receive an
ID, corresponding to the order of their appear-
ance in the document). If we are provided
with all the edges then we surely obtain ∀i =
1..4, clusterID(mi) = m1. However, if an edge,
e.g., (m1,m3), is missing, clusterID(m3) = m2

and it would differ from the cluster ID of the other
coreferring mentions. Thus, we made the neces-
sary modifications to the LSVM program code,
which resolve the above problem by activating the
following rule: clusterID(mi) = min{mi ∪
{mj : ∃ a positive route connectingmi andmj}}.

Another program issue requiring an adjustment
is the construction of a gold spanning forest for
the first iteration. In the original version of soft-
ware, this is done by connecting consecutively
the cluster edges. For the aforementioned cluster
K, chain {(m1,m2), (m2,m3), (m3,m4)} would

205



All edges Filtered edges
Scorer Version v4 v7 v4 v7

Original LSVM 60.22 56.56 53.15 46.67
Modified LSVM 60.22 56.56 60.31 57.18

(a) development set

All edges Filtered edges
Scorer Version v4 v7 v4 v7

Original LSVM 59.61 55.19 52.85 46.03
Modified LSVM 59.61 55.19 59.71 56.09

(b) test set

Table 1: Performance of the LSVM implementations on the
English part of the CoNLL-2012 dataset.

be output. However, this is not a valid manner
when instead of the entire graphs, some edges
are filtered. Our modification therefore con-
nects each mention mi to min{mj : mj >
mi,∃ a positive edge betweenmi andmj}.

Beside the other insignificant changes to the
program code, our adjustments enabled us to train
the LSVM on thoroughly filtered data while reach-
ing basically the same performance as in the fully-
connected case.

6 Experiments
In all our experiments, we used the English part of
the corpus from the CoNLL 2012-Shared Task3,
which comprises 2,802, 343 and 348 documents
for training, development and testing, respectively.
We report our results in terms of the MELA
score (Pradhan et al., 2012) computed using the
versions 4 and 7 of the official CoNLL scorer. Our
feature set is composed of BART4(Versley et al.,
2008) and some Fernandes et al. features.

Table 1(a) reports our experiments on the de-
velopment set, using the original LSVM (Row 1)
and our modified version enabling the use of fil-
ters (Row 2). The first column regards the use
of a fully-connected coreference graph. The num-
bers confirm that we do not introduce any errors to
the implementation since we obtain equal perfor-
mance as with the original algorithm (v4 and v7
are different scorers). The results in the rightmost
column are more interesting as they show that the
original LSVM loses up to 10 absolute percent
points whereas the modified version obtains prac-
tically the same results as when using unfiltered
graphs. It should be noted that we use here only
3.94% of edges: this corresponds to a substantial
speed-up of the learning and classification phases.
Table 1(b) illustrates the same trend on the test set.

3http://conll.cemantix.org/2012/data.
html

4http://bart-anaphora.org

All edges Filtered edges
Scorer Version v4 v7 v4 v7
Development 61.68 58.25 61.78 58.89
Test 61.21 57.64 61.23 57.90

Table 2: Accuracy of our implementation of the Latent Per-
ceptron of Fernandes et al. (2012) on the English part of the
CoNLL-2012 dataset.

In Table 2, we report the performance of our
implementation of the modelling of Fernandes et
al., showing that the perceptron model unexpect-
edly outperforms LSVM in all the settings. The
main difference of the methods is that LSVM finds
a global optimum5, whereas perceptron simply
finds a solution. We thus would expect higher ac-
curacy from LSVM. However, LSVM uses graphs
instead of trees along with a different spanning
tree algorithm, i.e., Kruskal’s vs. Edmond’s used
by the Latent Perceptron.

To shed some light on this question, we imple-
mented the latent perceptron with the graph model
and Kruskal’s spanning algorithm as it is done in
LSVM. Due to the time constraints, we could train
this perceptron implementation only on a part of
the filtered training set, constituted by 363 out of
all 2, 802 documents. We obtained 58.79(v4) and
55.43(v7) on the development set. These results
are lower than what we obtained with LSVM on
the same data, i.e., 59.51(v4), 56.22(v7). Ad-
ditionally, the same perceptron but using latent
trees and Edmonds’ algorithm scored 61.37(v4)
and 58.33(v7). This suggests that Edmonds’ span-
ning tree algorithm is superior to Kruskal’s for CR
and LSVM using it may outperform the latent per-
ceptron.

7 Conclusions

We have performed a comparative analysis of
the structured prediction frameworks for coref-
erence resolution. Our experiments reveal that
the graph modelling of Fernandes et al. and Ed-
monds’ spanning algorithm seem to tackle the task
more specifically. As a short-term future work,
we intend to verify if LSVM benefits from us-
ing Edmonds’ algorithm. We have also enabled
the LSVM implementation to operate on partial
graphs, which allows the framework to be com-
bined with different filtering strategies and facili-
tates its comparison with other systems.

5Although, in latent methods, this is often not true as the
data is not separable.

206



Acknowledgments

The research described in this paper has been par-
tially supported by the EU FP7 grant #288024:
LIMOSINE – Linguistically Motivated Semantic
aggregation engiNes.

References
Michael Collins. 2002. Discriminative training meth-

ods for hidden markov models: Theory and exper-
iments with perceptron algorithms. In Proceedings
of the ACL-02 Conference on Empirical Methods in
Natural Language Processing - Volume 10, EMNLP
’02, pages 1–8, Stroudsburg, PA, USA. Association
for Computational Linguistics.

Jack R. Edmonds. 1967. Optimum branchings. Jour-
nal of research of National Bureau of standards,
pages 233–240.

Eraldo Fernandes, Cı́cero dos Santos, and Ruy Milidiú.
2012. Latent structure perceptron with feature in-
duction for unrestricted coreference resolution. In
Joint Conference on EMNLP and CoNLL - Shared
Task, pages 41–48, Jeju Island, Korea, July. Associ-
ation for Computational Linguistics.

Joseph B. Kruskal. 1956. On the Shortest Span-
ning Subtree of a Graph and the Traveling Salesman
Problem. In Proceedings of the American Mathe-
matical Society, 7.

Sameer Pradhan, Alessandro Moschitti, Nianwen Xue,
Olga Uryupina, and Yuchen Zhang. 2012. Conll-
2012 shared task: Modeling multilingual unre-
stricted coreference in ontonotes. In Joint Confer-
ence on EMNLP and CoNLL - Shared Task, page
1–40, Jeju Island, Korea, July. Association for Com-
putational Linguistics.

Ioannis Tsochantaridis, Thomas Hofmann, Thorsten
Joachims, and Yasemin Altun. 2004. Support vec-
tor machine learning for interdependent and struc-
tured output spaces. In Proceedings of the Twenty-
first International Conference on Machine Learning,
ICML ’04, pages 104–, New York, NY, USA. ACM.

Yannick Versley, Simone Ponzetto, Massimo Poesio,
Vladimir Eidelman, Alan Jern, Jason Smith, Xi-
aofeng Yang, and Alessandro Moschitti. 2008.
Bart: A modular toolkit for coreference resolution.

Chun-Nam John Yu and Thorsten Joachims. 2009.
Learning structural svms with latent variables. In
Proceedings of the 26th Annual International Con-
ference on Machine Learning, ICML ’09, pages
1169–1176, New York, NY, USA. ACM.

207




