
A Preliminary Comparison of State-of-the-art Dependency Parsers
on the Italian Stanford Dependency Treebank

Alberto Lavelli
FBK-irst

via Sommarive, 18 - Povo
I-38123 Trento (TN) - ITALY

lavelli@fbk.eu

Abstract

English. This paper reports the efforts in-
volved in applying several state-of-the-art
dependency parsers on the Italian Stanford
Dependency Treebank (ISDT). The aim of
such efforts is twofold: first, to compare
the performance and choose the parser to
participate in the EVALITA 2014 task on
dependency parsing; second, to investi-
gate how simple it is to apply freely avail-
able state-of-the-art dependency parsers to
a new language/treebank.

Italiano. Questo articolo descrive le at-
tività svolte per applicare vari analizzatori
sintattici a dipendenza allo stato dell’arte
all’Italian Stanford Dependency Treebank
(ISDT). L’obiettivo di questi sforzi è du-
plice: in primo luogo, confrontare le
prestazioni e scegliere il parser per parte-
cipare al task EVALITA 2014 su depen-
dency parsing; secondo, indagare quanto
è facile applicare analizzatori sintattici a
dipendenza liberamente disponibili a una
nuova lingua / treebank.

1 Introduction

Recently, there has been an increasing interest in
dependency parsing, witnessed by the organisa-
tion of a number of shared tasks, e.g. Buchholz
and Marsi (2006), Nivre et al. (2007). Concerning
Italian, there have been tasks on dependency pars-
ing in all the editions of the EVALITA evaluation
campaign (Bosco et al., 2008; Bosco et al., 2009;
Bosco and Mazzei, 2011; Bosco et al., 2014). In
the 2014 edition, the task on dependency pars-
ing exploits the Italian Stanford Dependency Tree-
bank (ISDT), a new treebank featuring an annota-
tion based on Stanford Dependencies (de Marneffe
and Manning, 2008).

This paper reports the efforts involved in apply-
ing several state-of-the-art dependency parsers on
ISDT. There are at least two motivations for such
efforts. First, to compare the results and choose
the parsers to participate in the EVALITA 2014
task on dependency parsing. Second, to inves-
tigate how simple it is to apply freely available
state-of-the-art dependency parsers to a new lan-
guage/treebank following the instructions avail-
able together with the code and possibly having
a few interactions with the developers.

As in many other NLP fields, there are very few
comparative articles when the performance of dif-
ferent parsers is compared. Most of the papers
simply present the results of a newly proposed ap-
proach and compare them with the results reported
in previous articles. In other cases, the papers are
devoted to the application of the same tool to dif-
ferent languages/treebanks.

It is important to stress that the comparison con-
cerns tools used more or less out of the box and
that the results cannot be used to compare specific
characteristics like: parsing algorithms, learning
systems, . . .

2 Parsers

The choice of the parsers used in this study started
from the two we already applied at EVALITA
2011, i.e. MaltParser and the ensemble method
described by Surdeanu and Manning (2010). We
then identified a number of other dependency
parsers that, in the last years, have shown state-
of-the-art performance, that are freely available
and with the possibility of training on new tree-
banks. The ones included in the study reported in
this paper are the MATE dependency parsers, Tur-
boParser, and ZPar.

We plan to include other dependency parsers
in our study. We have not been able to exploit
some of them because of different reasons: they
are not yet available online, they lack documenta-

229

10.12871/CLICIT2014144



tion on how to train the parser on new treebanks,
they have limitations in the encoding of texts (in-
put texts only in ASCII and not in UTF-8), . . .

MaltParser (Nivre et al., 2006) (version 1.8) im-
plements the transition-based approach to depen-
dency parsing, which has two essential compo-
nents:

• A nondeterministic transition system for
mapping sentences to dependency trees

• A classifier that predicts the next transition
for every possible system configuration

Given these two components, dependency parsing
can be performed as greedy deterministic search
through the transition system, guided by the clas-
sifier. With this technique, it is possible to per-
form parsing in linear time for projective depen-
dency trees and quadratic time for arbitrary (non-
projective) trees (Nivre, 2008). MaltParser in-
cludes different built-in transition systems, dif-
ferent classifiers and techniques for recovering
non-projective dependencies with strictly projec-
tive parsers.

The ensemble model made available by Mihai
Surdeanu (Surdeanu and Manning, 2010)1 imple-
ments a linear interpolation of several linear-time
parsing models (all based on MaltParser). In par-
ticular, it combines five different variants of Malt-
Parser (Nivre’s arc-standard left-to-right, Nivre’s
arc-eager left-to-right, Covington’s non projec-
tive left-to-right, Nivre’s arc-standard right-to-left,
Covington’s non projective right-to-left) as base
parsers.

The MATE tools2 include both a graph-based
parser (Bohnet, 2010) and a transition-based
parser (Bohnet and Nivre, 2012; Bohnet and
Kuhn, 2012). For the languages of the 2009
CoNLL Shared Task, the graph-based MATE
parser reached accuracy scores similar or above
the top performing systems with fast process-
ing. The speed improvement is obtained with
the use of Hash Kernels and parallel algorithms.
The transition-based MATE parser is a model that
takes into account complete structures as they be-
come available to rescore the elements of a beam,
combining the advantages of transition-based and
graph-based approaches.

1http://www.surdeanu.info/mihai/
ensemble/

2https://code.google.com/p/mate-tools/

TurboParser (Martins et al., 2013)3 (version
2.1) is a C++ package that implements graph-
based dependency parsing exploiting third-order
features.

ZPar (Zhang and Nivre, 2011) is a transition-
based parser implemented in C++. ZPar sup-
ports multiple languages and multiple grammar
formalisms. ZPar has been most heavily devel-
oped for Chinese and English, while it provides
generic support for other languages. It leverages
a global discriminative training and beam-search
framework.

3 Data Set

The experiments reported in the paper are per-
formed on the Italian Stanford Dependency Tree-
bank (ISDT) (Bosco et al., 2013) version 2.0 re-
leased in the context of the EVALITA evaluation
campaign on Dependency Parsing for Information
Extraction (Bosco et al., 2014)4. There are three
main novelties with respect to the previously avail-
able Italian treebanks: (i) the size of the dataset,
which is much bigger than the resources used in
the previous EVALITA campaigns; (ii) the an-
notation scheme, which is compliant to de facto
standards at the level of both representation for-
mat (CoNLL) and adopted tagset (Stanford De-
pendency Scheme); (iii) its being defined with a
specific view to supporting information extraction
tasks, a feature inherited from the Stanford Depen-
dency scheme.

The EVALITA task focuses on standard de-
pendency parsing of Italian texts with evaluations
aimed at testing the performance of parsing sys-
tems as well as their suitability to Information Ex-
traction tasks.

The training set contains 7,414 sentences
(158,561 tokens), the development set 564 sen-
tences (12,014 tokens), and the test set 376 sen-
tences (9,066 tokens).

4 Experiments

The level of interaction with the authors of the
parsers varied. In two cases (ensemble, Malt-
Parser), we have mainly exploited the experience
gained in previous editions of EVALITA. In the
case of the MATE parsers, we have had a few in-

3http://www.ark.cs.cmu.edu/
TurboParser/

4http://www.evalita.it/2014/tasks/dep_
par4IE.

230



collapsed and propagated
LAS P R F1

MATE stacking (TurboParser) 89.72 82.90 90.58 86.57
Ensemble (5 parsers) 89.72 82.64 90.34 86.32
ZPar 89.53 84.65 92.11 88.22
MATE stacking (transition-based) 89.02 82.09 89.77 85.76
TurboParser (model type=full) 88.76 83.32 90.71 86.86
TurboParser (model type=standard) 88.68 83.07 90.55 86.65
MATE graph-based 88.51 81.72 89.42 85.39
MATE transition-based 88.32 80.70 89.40 84.82
Ensemble (MaltParser v.1.8) 88.15 80.69 88.34 84.34
MaltParser (Covington non proj) 87.79 81.50 87.39 84.34
MaltParser (Nivre eager -PP head) 87.53 81.30 88.78 84.88
MaltParser (Nivre standard - MaltOptimizer) 86.35 81.17 89.04 84.92
Ensemble (MaltParser v.1.3) 86.27 78.57 86.28 82.24

Table 1: Results on the EVALITA 2014 development set without considering punctuation. The second
column reports the results in term of Labeled Attachment Score (LAS). The score is in bold if the differ-
ence with the following line is statistically significant. The three columns on the right show the results
in terms of Precision, Recall and F1 for the collapsed and propagated relations.

teractions with the author who suggested the use
of some undocumented options. In the case of Tur-
boParser, we have simply used the parser as it is
after reading the available documentation. Con-
cerning ZPar, we have had a few interactions with
the authors who helped solving some issues.

As for the ensemble, at the beginning we re-
peated what we had already done at EVALITA
2011 (Lavelli, 2011), i.e. using the ensemble
as it is, simply exploiting the more accurate ex-
tended models for the base parsers. The results
were unsatisfactory, because the ensemble is based
on an old version of MaltParser (v.1.3) that per-
forms worse than the current version (v.1.8). So
we decided to apply the ensemble model both
to the output produced by the current version of
MaltParser and to the output produced by some
of the parsers used in this study. In the latter
case, we have used the output of the following
5 parsers: graph-based MATE parser, transition-
based MATE parser, TurboParser (full model),
MaltParser (Nivre’s arc-eager, PP-head, left-to-
right), and MaltParser (Nivre’s arc-eager, PP-
head, right-to-left).

Concerning MaltParser, in addition to using
the best performing configurations at EVALITA
20115, we have used MaltOptimizer6 (Ballesteros
and Nivre, 2014) to identify the best configuration.
According to MaltOptimizer, the best configura-
tion is Nivre’s arc-standard. However, we have ob-

5Nivre’s arc-eager, PP-head, and Covington non projec-
tive.

6http://nil.fdi.ucm.es/maltoptimizer/

tained better results using the configurations used
in EVALITA 2011. We are currently investigating
this issue.

As for the MATE parsers, we have applied both
the graph-based parser and the transition-based
parser. Moreover, we have combined the graph-
based parser with the output of another parser
(both the transition-based parser and TurboParser)
using stacking. Stacking is a technique of integrat-
ing two parsers at learning time7, where one of the
parser generates features for the other.

Concerning ZPar, the main difficulty was the
fact that a lot of RAM is needed for processing
long sentences (i.e., sentences with more than 100
tokens need 70 GB of RAM).

During the preparation of the participation to
the task, the experiments were performed using
the split provided by the organisers, i.e. training
on the training set and testing using the develop-
ment set.

When applying stacking, we have performed
10-fold cross validation of the first parser on the
training set, using the resulting output to provide
to the second parser the predictions used during
learning. During parsing, the output of the first
parser (trained on the whole training set and ap-
plied to the development set) has been provided to
the second parser.

In Table 1 we report the parser results ranked
according to decreasing Labeled Accuracy Score

7Differently from what is done by the ensemble method
described above where the combination takes place only at
parsing time.

231



collapsed and propagated
LAS P R F1

MATE stacking (transition-based) 87.67 79.14 88.14 83.40
Ensemble (5 parsers) 87.53 78.28 88.09 82.90
MATE stacking (TurboParser) 87.37 79.13 87.97 83.31
MATE transition-based 87.07 78.72 87.16 82.73
MATE graph-based 86.91 78.74 87.97 83.10
ZPar 86.79 80.30 88.93 84.39
TurboParser (model type=full) 86.53 79.43 89.42 84.13
TurboParser (model type=standard) 86.45 79.65 89.32 84.21
Ensemble (MaltParser v.1.8) 85.94 76.30 86.38 81.03
MaltParser (Nivre eager -PP head) 85.82 78.47 86.06 82.09
Ensemble (MaltParser v.1.3) 85.06 76.36 84.74 80.33
MaltParser (Covington non proj) 84.94 77.24 82.97 80.00
MaltParser (Nivre standard - MaltOptimizer) 84.44 76.53 86.99 81.43

Table 2: Results on the EVALITA 2014 test set without considering punctuation. The second column
reports the results in term of Labeled Attachment Score (LAS). The score is in bold if the difference with
the following line is statistically significant. The three columns on the right show the results in terms of
Precision, Recall and F1 for the collapsed and propagated relations.

(LAS), not considering punctuation. The score is
in bold if the difference with the following line
is statistically significant8. In the three columns
on the right of the table the results for the col-
lapsed and propagated relations are shown (both
the conversion and the evaluation are performed
using scripts provided by the organisers).

The ranking of the results according to LAS and
according to Precision, Recall and F1 are different.
This made the choice of the parser for the partic-
ipation difficult, given that the participants would
have been ranked based on both measures.

According to the results on the development
set, we decided to submit for the official evalu-
ation three models: ZPar, MATE stacking (Tur-
boParser), and the ensemble combining 5 of the
best parsers. In this case, the training was per-
formed using both the training and the develop-
ment set. In Table 2. you may find the results of
all the parsers used in this study (in italics those
submitted to the official evaluation). Comparing
Table 1 and Table 2 different rankings between
parsers emerge. This calls for an analysis to under-
stand the reasons of such difference. The results
of a preliminary analysis and further details about
our participation to the task are reported in Lavelli
(2014).

The results obtained by the best system submit-
ted to the official evaluation are: 87.89 (LAS),
81.89/90.45/85.95 (P/R/F1). More details about

8To compute the statistical significance of the differences
between results, we have used MaltEval (Nilsson and Nivre,
2008)

the task and the results obtained by the participants
are available in Bosco et al. (2014).

We are currently analysing the results shown
above to understand how to further proceed in our
investigation. A general preliminary consideration
is that approaches that combine the results of dif-
ferent parsers perform better than those based on a
single parser model, usually with the drawback of
a bigger complexity.

5 Conclusions

In the paper we have reported on work in progress
on the comparison between several state-of-the-art
dependency parsers on the Italian Stanford Depen-
dency Treebank (ISDT).

In the near future, we plan to widen the scope
of the comparison including more parsers.

Finally, we will perform an analysis of the re-
sults obtained by the different parsers considering
not only their performance but also their behaviour
in terms of speed, CPU load at training and pars-
ing time, ease of use, licence agreement, . . .

Acknowledgments

This work was partially supported by the EC-
funded project EXCITEMENT (FP7ICT-287923).
We would like to thank the authors of the parsers
for making them freely available. In particular, we
would like to thank Bernd Bohnet, Joakim Nivre,
Mihai Surdeanu, Yue Zhang, and Yijia Liu for
kindly answering our questions on the practical
application of their parsers and for providing use-
ful suggestions.

232



References
Miguel Ballesteros and Joakim Nivre. 2014. MaltOp-

timizer: Fast and effective parser optimization. Nat-
ural Language Engineering, FirstView:1–27, 10.

Bernd Bohnet and Jonas Kuhn. 2012. The best of
both worlds – a graph-based completion model for
transition-based parsers. In Proceedings of the 13th
Conference of the European Chapter of the Associ-
ation for Computational Linguistics, pages 77–87,
Avignon, France, April. Association for Computa-
tional Linguistics.

Bernd Bohnet and Joakim Nivre. 2012. A transition-
based system for joint part-of-speech tagging and la-
beled non-projective dependency parsing. In Pro-
ceedings of the 2012 Joint Conference on Empiri-
cal Methods in Natural Language Processing and
Computational Natural Language Learning, pages
1455–1465, Jeju Island, Korea, July. Association for
Computational Linguistics.

Bernd Bohnet. 2010. Top accuracy and fast depen-
dency parsing is not a contradiction. In Proceedings
of the 23rd International Conference on Computa-
tional Linguistics (Coling 2010), pages 89–97, Bei-
jing, China, August. Coling 2010 Organizing Com-
mittee.

Cristina Bosco and Alessandro Mazzei. 2011. The
EVALITA 2011 parsing task: the dependency track.
In Working Notes of EVALITA 2011, pages 24–25.

Cristina Bosco, Alessandro Mazzei, Vincenzo Lom-
bardo, Giuseppe Attardi, Anna Corazza, Alberto
Lavelli, Leonardo Lesmo, Giorgio Satta, and Maria
Simi. 2008. Comparing Italian parsers on a com-
mon treebank: the EVALITA experience. In Pro-
ceedings of LREC 2008.

Cristina Bosco, Simonetta Montemagni, Alessandro
Mazzei, Vincenzo Lombardo, Felice DellOrletta,
and Alessandro Lenci. 2009. Evalita09 parsing
task: comparing dependency parsers and treebanks.
In Proceedings of EVALITA 2009.

Cristina Bosco, Simonetta Montemagni, and Maria
Simi. 2013. Converting Italian treebanks: Towards
an Italian Stanford Dependency Treebank. In Pro-
ceedings of the 7th Linguistic Annotation Workshop
and Interoperability with Discourse, pages 61–69,
Sofia, Bulgaria, August. Association for Computa-
tional Linguistics.

Cristina Bosco, Felice Dell’Orletta, Simonetta Monte-
magni, Manuela Sanguinetti, and Maria Simi. 2014.
The EVALITA 2014 dependency parsing task. In
Proceedings of EVALITA 2014.

Sabine Buchholz and Erwin Marsi. 2006. CoNLL-
X shared task on multilingual dependency parsing.
In Proceedings of the Tenth Conference on Com-
putational Natural Language Learning (CoNLL-X),
pages 149–164, New York City, June. Association
for Computational Linguistics.

Marie-Catherine de Marneffe and Christopher D. Man-
ning. 2008. The Stanford typed dependencies rep-
resentation. In Coling 2008: Proceedings of the
workshop on Cross-Framework and Cross-Domain
Parser Evaluation, pages 1–8, Manchester, UK, Au-
gust. Coling 2008 Organizing Committee.

Alberto Lavelli. 2011. An ensemble model for the
EVALITA 2011 dependency parsing task. In Work-
ing Notes of EVALITA 2011.

Alberto Lavelli. 2014. Comparing state-of-the-art
dependency parsers for the EVALITA 2014 depen-
dency parsing task. In Proceedings of EVALITA
2014.

Andre Martins, Miguel Almeida, and Noah A. Smith.
2013. Turning on the turbo: Fast third-order non-
projective turbo parsers. In Proceedings of the 51st
Annual Meeting of the Association for Computa-
tional Linguistics (Volume 2: Short Papers), pages
617–622, Sofia, Bulgaria, August. Association for
Computational Linguistics.

Jens Nilsson and Joakim Nivre. 2008. MaltEval:
an evaluation and visualization tool for dependency
parsing. In Proceedings of LREC 2008.

Joakim Nivre, Johan Hall, and Jens Nilsson. 2006.
MaltParser: A data-driven parser-generator for de-
pendency parsing. In Proceedings of the 5th In-
ternational Conference on Language Resources and
Evaluation (LREC), pages 2216–2219.

Joakim Nivre, Johan Hall, Sandra Kübler, Ryan Mc-
Donald, Jens Nilsson, Sebastian Riedel, and Deniz
Yuret. 2007. The CoNLL 2007 shared task on de-
pendency parsing. In Proceedings of the CoNLL
Shared Task Session of EMNLP-CoNLL 2007, pages
915–932, Prague, Czech Republic, June. Associa-
tion for Computational Linguistics.

Joakim Nivre. 2008. Algorithms for deterministic in-
cremental dependency parsing. Computational Lin-
guistics, 34:513–553.

Mihai Surdeanu and Christopher D. Manning. 2010.
Ensemble models for dependency parsing: Cheap
and good? In Human Language Technologies:
The 2010 Annual Conference of the North American
Chapter of the Association for Computational Lin-
guistics, pages 649–652, Los Angeles, California,
June. Association for Computational Linguistics.

Yue Zhang and Joakim Nivre. 2011. Transition-based
dependency parsing with rich non-local features. In
Proceedings of the 49th Annual Meeting of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, pages 188–193, Portland, Ore-
gon, USA, June. Association for Computational Lin-
guistics.

233




