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Abstract 

English. Network theory provides a 
suitable framework to model the structure 
of language as a complex system. Based 
on a network built from a Latin 
dependency treebank, this paper applies 
methods for network analysis to show the 
key role of the verb sum (to be) in the 
overall structure of the network. 

Italiano. La teoria dei grafi fornisce un 
valido supporto alla modellizzazione 
strutturale del sistema linguistico. 
Basandosi su un network costruito a 
partire da una treebank a dipendenze del 
latino, l’articolo applica diversi metodi di 
analisi dei grafi, mostrando l’importanza 
del ruolo rivestito dal verbo sum (essere) 
nella struttura complessiva del network. 

1 Introduction 

Considering language as a complex system with 
deep relations between its components is a 
widespread approach in contemporary linguistics 
(Briscoe, 1998; Lamb, 1998; Steels, 2000; 
Hudson, 2007). Such a view implies that 
language features complex network structures at 
all its levels of analysis (phonetic, 
morphological, lexical, syntactic, semantic). 

Network theory provides a suitable framework 
to model the structure of linguistic systems from 
such a perspective. Network theory is the study 

of elements, called vertices or nodes, and their 
connections, called edges or links. A complex 
network is a (un)directed graph G(V, E) which is 
given by a set of vertices V and a set of edges E 
(Ferrer i Cancho, 2010). 

Vertices and edges can represent different 
things in networks. In a language network, the 
vertices can be different linguistic units (for 
instance, words), while the edges can represent 
different kinds of relations holding between these 
units (for instance, syntactic relations). 

So far, all the network-based studies in 
linguistics have concerned modern and living 
languages (Mehler, 2008a). However, times are 
mature enough for extending such approach also 
to the study of ancient languages. Indeed, the last 
years have seen a large growth of language 
resources for ancient languages. Among these 
resources are syntactically annotated corpora 
(treebanks), which provide essential information 
for building syntactic language networks. 

2 From a Dependency Treebank to a 

Syntactic Dependency Network 

For the purpose of the present study, we use the 
Index Thomisticus Treebank, a Medieval Latin 
dependency treebank based on the works of 
Thomas Aquinas (IT-TB; 
http://itreebank.marginalia.it; Passarotti, 2011). 
Presently, the IT-TB includes around 200,000 
nodes in approximately 11,000 sentences. For 
homogeneity reasons, in this work we consider 
the subset of the IT-TB that features the in-line 
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annotation of the text of the Summa contra 
Gentiles (entire first book and chapters 1-65 of 
the second one) for a total of 110,224 nodes. 

Automatic data cleaning was performed before 
building the network, by excluding punctuation 
marks, function words and elliptical dependency 
relations from the input data. Then, the method 
developed by Ferrer i Cancho et alii (2004) was 
applied to build the network. 

According to this method, a dependency 
relation appearing in the treebank is converted 
into an edge in the network. The vertices of the 
network are lemmas. Two lemmas are linked if 
they appear at least once in a modifier-head 
relation (dependency) in the treebank. 

Then a syntactic dependency network is 
constructed by accumulating sentence structures 
from the treebank. The treebank is parsed 
sentence by sentence and new vertices are added 
to the network. When a vertex is already present 
in the network, more links are added to it. 

The result is a syntactic dependency network 
containing all lemmas and all dependency 
relations of the treebank. All connections 
between particular lemmas are counted, which 
means that the graph reflects the frequency of 
connections. The network is an emergent 
property of sentence structures (Ferrer i Cancho, 
2005; Ferrer i Cancho et al., 2004), while the 
structure of a single sentence is a subgraph of the 
global network (Bollobás, 1998). 

The free software Cytoscape was used for 
network creation and computing (Shannon et al., 
2003; Saito et al., 2012). 

Figure 2 presents the syntactic dependency 
network of the subset of the IT-TB used in this 
work. Vertices and edges are arranged according 
to the Edge-weighted Spring Embedded layout 
setting provided by Cytoscape (Kohl et al., 
2011). Edges are weighted by frequency, the 
most central relations in the network being those 
most frequent in the treebank. 

 

Figure 1. The network of the IT-TB 

The drawing in figure 1 is messy and not 
much informative. In order to both analyze and 
categorize the network, we use a number of 
topological indices that are able to unravel 
fundamental properties of the network that are 
hidden to the eye. 

3 Topological Indices 

Most complex networks are characterized by 
highly heterogeneous distributions (Newman, 
2005a). This property means that there are many 
vertices having a few connections and a few 
vertices with a disproportionately large number 
of connections. The most connected vertices in a 
network are called hubs (Albert & Barabási, 
2002; Newman, 2003). 

In network analysis, the centrality of a vertex 
is a topological index that measures its relative 
importance within a graph. We use two measures 
of centrality (‘betweenness’ and ‘closeness’) to 
calculate the importance of a vertex in a syntactic 
dependency network, i.e. to find hubs in the 
network. The higher are betweenness and 
closeness centralities of a vertex, the more 
important the vertex is in the network. 

The betweenness centrality of a vertex v, g(v), 
is a measure of the number of minimum distance 
(or “shortest”) paths running through v (Ferrer i 
Cancho et al., 2004). 
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Closeness centrality. In a network, the length 
of the shortest paths between all pairs of vertices 
is a natural distance metric. The “farness” of a 
vertex s is the sum of its distances to all other 
vertices, and its “closeness” is the inverse of the 
farness (Sabidussi, 1966). Thus, the more central 
a vertex is, the lower is its total distance to all 
other vertices. Closeness centrality is a measure 
of how long it takes to spread information from s 
to all other vertices sequentially in the network 
(Newman, 2005b; Wuchty & Stadler, 2003). 

Further, we use the following topological 
indices in order to categorize a syntactic 
dependency network by evaluating its 
complexity (Mehler, 2008b). 

The so-called degree of a vertex s is the 
number of different relations holding between s 
and other vertices in the network. The average 

degree ε(G)=edges/vertices of a graph G is the 
proportion of edges with respect to the number of 
vertices. 

Clustering coefficient is the probability that 
two vertices that are neighbours of a given vertex 
are neighbours of each other (Solé et al., 2010). 
In other words, it is a measure of the relative 
frequency of triangles in a network. 

Average path length. Path length is defined as 
the average minimal distance between any pair 
of vertices (Solé et al., 2010). The average path 
length d is defined as the average shortest 
distance between any pair of vertices in a 
network. 

Together with the clustering coefficient, the 
average path length of a graph G constitutes the 
‘small-world model’ of Watts & Strogatz (1998), 
which has proved to be an appropriate model for 
many types of networks (like, for instance, 
biological and social ones). If a network has a 
high clustering coefficient but also a very short 
average path length in comparison to random 
graphs with the same number of vertices, it is a 
small-world network. 

4 Hubs in the IT-TB Network 

For each vertex in the IT-TB network, we 
calculated its betweenness and closeness 
centralities using the Cytoscape app CytoNCA 
(http://apps.cytoscape.org/apps/cytonca). 

Table 1 presents the rates of the centrality 
measures of the first five lemmas in the IT-TB 
network ranked by betweenness centrality. The 
table reports also the degree for each lemma. 

R. Lemma Betw. C. Clos. C. Deg. 

1 sum (to be) 1793719.9 0.2822 1095 
2 dico (to say) 324728.16 0.2558 401 
3 possum (can) 307137.8 0.2581 464 
4 habeo (to have) 214495.38 0.2535 351 
5 facio (to make) 146891.89 0.2507 289 

Table 1. Results on centrality measures 

Although some lemmas are differently ranked 
according to different centrality measures (for 
instance, dico is second by betweenness 
centrality, but it is third by both closeness 
centrality and degree), sum remains always first. 
This shows that sum is the “most hub” among the 
hubs of the IT-TB network. 

Hubs are the key components of the 
complexity of a network. They support high 
efficiency of network traversal, but, just because 
of their important role in the web, their loss 
heavily impact the performance of the whole 
system (Jeong et al., 2002). If the most highly 
connected vertices are removed, the network 
properties change radically and the network 
breaks into fragments, sometimes even 
promoting a system’s collapse (Albert & 
Barabási, 2000). 

Following its status of most hub vertex in the 
IT-TB network, we removed the vertex of sum 
and of all its direct neighbours from the network. 
Further, we removed all those vertices that 
become isolated in the network after such a 
removal is applied (i.e. those with degree = 0; in 
total: 702 vertices). Figure 2 presents the 
subnetwork that results from these modifications. 
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Figure 2. The IT-TB no-sum subnetwork 

The counterpart of the subnetwork in figure 2 
is the subnetwork formed only by the vertex of 
sum and its direct neighbours (figure 3). 

 

Figure 3. The IT-TB sum-only subnetwork 

While figure 2 shows that removing the vertex 
of sum and those of its direct neighbours makes 
the network lose its connecting core, figure 3 
presents a very much connected subnetwork. 

In order to evaluate the role of sum in the 
network beyond the graphical layout of the 
subnetworks, we calculated the above mentioned 
topological indices of the full network of the IT-
TB (1) and of the subnetworks reported 
respectively in figures 2 (2) and 3 (3). Table 2 
presents the results. 

 1 2 3 

N. of vertices 2,198 398 1,098 
N. of edges 19,031 301 15,486 
Average degree 8.6583 0.7562 14.1038 
Average path length 3.108 1.4883 2.5242 
Clustering coefficient 0.247 0.081 0.352 

Table 2. Results on topological indices 

From the rates reported in table 2 it turns out 
that the subnetwork 2 is less small-world than 1 
and 3, i.e. 2 is less connected and more 
fragmented than 1 and 3. This is shown by the 
clustering coefficient, which is dramatically 
lower in 2 than in 1 and 3. Although the average 
path length of 2 is shorter than 1 and 3, this is 
motivated by the much lower number of vertices 
in 2 than in 1 and 3, and not by the more small-
worldness of 2. This is more clear if we look at 
the relation between the number of edges and the 
number of vertices in the networks. While in 1 
and 3, the edges are much more than the vertices, 
in 2 the opposite holds, thus leading to much 
different average degrees. 

The subnetwork 3 is even more small-world 
than 1. 3 is smaller than 1, as it results from 
removing a number of vertices from 1. This is 
why the average path length of 3 is shorter than 
1. However, both the average degree and the 
clustering coefficient of 3 are higher than 1. It is 
worth noting that 3 includes, alone, half of the 
total of the vertices occurring in 1 and around 
75% of the edges of 1: this shows that the vertex 
of sum is directly connected to half the vertices 
of the network and these connections cover most 
of those that occur in the IT-TB network. 

5 Conclusion 

While the most widespread tools for querying 
and analyzing treebanks give results in terms of 
lists of words or sequences of trees, network 
analysis permits a synoptic view of all the 
relations that hold between the words in a 
treebank. This makes network analysis a 
powerful method to fully exploit the structural 
information provided by a treebank, for a better 
understanding of the properties of language as a 
complex system with interconnnected elements. 
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