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Abstract

English. This paper presents work in
progress on the development of a new gen-
eral purpose classifier based on Quantum
Probability Theory. We will propose a
kernel-based formulation of this classifier
that is able to compete with a state-of-the-
art machine learning methods when clas-
sifying instances from two hard artificial
problems and two real tasks taken from the
speech processing domain.

Italiano. Questo contributo presenta
i primi risultati di un progetto per lo
sviluppo di un classificatore basato sulla
teoria della probabilità quantistica. Pre-
senteremo un modello basato su kernel in
grado di competere con i migliori metodi
di machine learning considerando i due
problemi artificiali complessi e i due casi
reali sui quali è stato valutato.

1 Introduction

Quantum Mechanics Theory (QMT) is one of the
most successful theory in modern science. De-
spite its ability to properly describe most natural
phenomena in the physics realm, the attempts to
prove its effectiveness in other domains remain
quite limited. Only in recent years some scholars
tried to embody principles derived from QMT into
their specific fields. This connection has been ac-
tively studied, for example, by the Information Re-
trieval community (Zuccon et al., 2009; Melucci,
van Rijsbergen, 2011; Gonzàlez, Caicedo, 2011)
and in the domain of cognitive sciences and deci-
sion making (Busemeyer, Bruza, 2012). Also the
NLP community started to look at QMT with in-
terest and some studies using it have already been
presented (Blacoe et al., 2013; Liu et al., 2013).

This paper presents work in progress on the de-
velopment of a new classifier based on Quantum
Probability Theory. Starting from the work pre-
sented in (Liu et al., 2013) we will show all the
limits of this simple quantum classifier and pro-
pose a new kernel-based formulation able to solve
most of its problems and able to compete with a
state-of-the-art classifier, namely Support Vector
Machines, when classifying instances from two
hard artificial problems and two real tasks taken
from speech processing domain.

2 Quantum Probability Theory

A quantum state denotes an unobservable distribu-
tion which gives rise to various observable physi-
cal quantities (Yeang, 2010). Mathematically it is
a vector in a complex Hilbert space. It can be writ-
ten in Dirac notation as |ψ〉 =

∑n
1 λj |ej〉where

λj are complex numbers and the |ej〉 are the ba-
sis of the Hilbert space (|.〉 is a column vector, or
a ket, while 〈.| is a row vector, or a bra). Using
this notation the inner product between two state
vectors can be expressed as 〈ψ|φ〉 and the outer
product as |ψ〉 〈φ|.
|ψ〉 is not directly observable but can be probed

through measurements. The probability of observ-
ing the elementary event |ej〉 is | 〈ej |ψ〉 |2 = |λj |2
and the probability of |ψ〉 collapsing on |ej〉 is
P (ej) = |λj |2/

∑n
1 |λi|2 (note that

∑n
1 |λi|2 =

‖|ψ〉‖2 where ‖·‖ is the vector norm). General
events are subspaces of the Hilbert space.

A matrix can be defined as a unitary operator if
and only if UU † = I = U †U , where † indicates
the Hermitian conjugate. In quantum probability
theory unitary operators can be used to evolve a
quantum system or to change the state/space basis:
|ψ′〉 = U |ψ〉.

Quantum probability theory (see (Vedral, 2007)
for a complete introduction) extends standard kol-
mogorovian probability theory and it is in princi-
ple adaptable to any discipline.
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3 Quantum Classifiers

3.1 The Classifier by (Liu et al., 2013)
In their paper Liu et al. presented a quantum clas-
sifier based on the early work of (Chen, 2002).
Given an Hilbert space of dimension n = ni+no,
where ni is the number of input features and no
is the number of output classes, they use a uni-
tary operator U to project the input state con-
tained in the subspace spanned by the first ni ba-
sis vectors into an output state contained in the
subspace spanned by the last no basis vectors:
|ψo〉 = U

∣∣ψi
〉
. Input,

∣∣ψi
〉
, and output, |ψo〉,

states are real vectors, the former having only the
first ni components different from 0 (assigned to
the problem input features of every instance) and
the latter only the last no components. From |ψo〉
they compute the probability of each class as
P (cj) = |ψo

ni+j |2/
∑no

1 |ψo
ni+i|2 for j = 1..no.

The unitary operatorU for performing instances
classification can be obtained by minimising the
loss function

err(T ) = 1/
∑|T |

j=1 〈ψo
j |ψt

j〉 ,
where T is the training set and

∣∣ψt
〉

is the target
vector for output probabilities (all zeros except 1
for the target class) for every instance k, using
standard optimisation techniques such as Conju-
gate Gradient (Hestenes, Stiefel, 1952), L-BFGS
(Liu, Nocedal, 1989) or ASA (Ingber, 1989).

This classifier exhibits interesting properties.
Let us examine its behaviour by using a
standard non-linear problem: the XOR prob-
lem. The four instances of this problem are:∣∣ψi

1

〉
= (−1,−1, 0, 0)

∣∣ψt
1

〉
= (0, 0, 1, 0)∣∣ψi

2

〉
= (−1, 1, 0, 0)

∣∣ψt
2

〉
= (0, 0, 0, 1)∣∣ψi

3

〉
= (1,−1, 0, 0)

∣∣ψt
3

〉
= (0, 0, 0, 1)∣∣ψi

4

〉
= (1, 1, 0, 0)

∣∣ψt
4

〉
= (0, 0, 1, 0)

Figure 1 depicts the probability functions for
both classes as well as the decision boundaries
where P (c1) > P (c2) after a training session. De-
spite the relative simplicity of this classifier the
two probability functions are non-linear, but the
decision boundaries are linear. Nevertheless it is
able to correctly classify the instances of the XOR
problem.

The simplicity and the low power of this classi-
fier emerge quite clearly when we test it with more
difficult, though linearly separable, classification
problems. Figure 2 shows the results of the (Liu
et al., 2013) classifier when applied to two simple
problems. In both cases the classifier is not able

Figure 1: The probability functions for c1 (left)
and c2 (center) for the XOR problem. At right,
the decision boundaries between the two classes,
where P (c1) > P (c2) is marked in black.

to properly divide the input space into different re-
gions corresponding to the required classes. More-
over, all the decision boundaries have to cross
the origin of the feature space, a very limiting
constraint for general classification problems, and
problems that require strict non-linear decision
boundaries cannot be successfully handled by this
classifier. Nevertheless the ability of managing a
classical non-linear problem, the XOR problem, is
very promising and extending this method could
lead, in our opinion, to interesting results.

Figure 2: A two-class problem (left) and a four-
class problem that cannot be successfully handled
by the classifier proposed by (Liu et al., 2013).

3.2 Kernel Quantum Classifier (KQC)

The goal of this paper is to extend the examined
classifier in various direction in order to obtain a
classification tool with higher performances.

A widely used technique to transform a linear
classifier into a non-linear one involves the use of
the “kernel trick”. A non-linearly separable prob-
lem in the input space can be mapped to a higher-
dimensional space where the decision borders be-
tween classes might be linear. We can do that
through the mapping function φ : Rn → Rm,
with m > n, that maps an input state vector

∣∣ψi
〉

to a new space. The interesting thing is that in
the new space, for some particular mappings, the
inner product can be calculated by using kernel
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functions k(x, y) = 〈φ(x), φ(y)〉 without explic-
itly computing the mapping φ of the two original
vectors.

We can express the unitary operator performing
the classification process as a combination of the
training input vectors in the new features space

|ψo〉 = U |φ(ψi)〉

|ψo〉 =
∑|T |

j=1 |αj〉 〈φ(ψi
j)| |φ(ψi)〉

|ψo〉 =
∑|T |

j=1 |αj〉 〈φ(ψi
j)|φ(ψi)〉

that can be rewritten using the kernel as

|ψo〉 =
|T |∑
j=1

|αj〉 k(ψi
j , ψ

i). (1)

Adding a bias term |α0〉 to the equation (1) lead
to the final model governing this new classifier:

|ψo〉 = |α0〉+
|T |∑
j=1

|αj〉 k(ψi
j , ψ

i) (2)

In this new formulation we have to obtain all the
|αj〉 vectors, j = 0, ..., |T |, through an optimisa-
tion process similar to the one of the previous case,
minimising a standard euclidean loss function

err(T ) =

|T |∑
j=1

no∑
k=1

(
Pj(ck)− ψt

j(ni+k)

)2
+γ

|T |∑
j=0

‖|αj〉‖.

using a numerical optimisation algorithm, L-
BFGS in our experiments, where P (c) is the class
probability defined in section 3.1 and γ

∑
‖|αj〉‖

is an L2 regularisation term on model parameters
(the real and imaginary parts of |αj〉 components).

Once learned a good model from the training
set T , represented by the |αj〉 vectors, we can use
equation (2) and the definition of class probability
for classifying new instance vectors.

It is worth noting that the KQC proposed here
involves a large number of variables during the
optimisation process (namely, 2 ∗ no ∗ (|T | + 1))
that depends linearly on the number of instances
in the training set T . In order to build a classifier
applicable to real problems, we have to introduce
special techniques to efficiently compute the gra-
dient needed by optimisation methods. We relied
on Automatic Differentiation (Griewank, Walther,
2008), avoiding any gradient approximation using

finite differences that would require a very large
number of error function evaluations. Using such
techniques the training times of KQC are compa-
rable to those of other machine learning methods.

Figure 3a and 3b show the classification results
of KQC, using the linear kernel (k(x, y) = 〈x, y〉),
when applied to the same problems analysed be-
fore to describe the behaviour of the (Liu et al.,
2013) classifier. KQC is able to discriminate effi-
ciently between linearly separable binary or mul-
ticlass problems adapting the decision boundaries
in the correct way. Moreover, using for example
the RBF kernel k(x, y) = exp(−‖x − y‖2/2σ2),
is able to manage complex non-linear problems as
in Figure 3c.

a) b)

c) d)

Figure 3: Some artificial problems used to verify
KQC behaviour.

4 Experiments and Evaluation

In order to test quantitatively the effectiveness of
the proposed quantum classifier – KQC – we set
up a number of experiments, both using artificial
benchmarks and real problems, and compared the
KQC performances with one of the machine learn-
ing methods that usually achieve state-of-the-art
performances on a large number of classification
problems, that is Support Vector Machines. We
relied on the SVM implementations in the SVM-
light package (Joachims, 1999) and in the SVM-
Multiclass package (Joachims et al., 2009).

4.1 Artificial datasets
We used two artificial datasets: 2-SPIRALS and
DECSIN as defined in (Segata, Blanzieri, 2009),
without adding any noise to the data (see Figure 4).
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They are both problems that involve a non-linear
decision boundary and they are widely used for
testing machine learning systems. The first dataset
is composed by 628 instances and the second by
6280 instances. For both datasets ni = no = 2.

a) b)

Figure 4: Artificial problems used for the evalua-
tion. a) 2-SPIRALS, b) DECSIN.

4.2 Real problems

The two real problems used for the KQC evalua-
tion are taken from the speech processing domain.

The first problem is a prominence identifica-
tion task in connected speech (Tamburini, 2009).
A subset of 382 utterances of the TIMIT Speech
corpus (Garofolo et al., 1990) has been manu-
ally annotated with binary prominence levels as
described in (Tamburini, 2006). Extracting for
each syllable the five acoustic features described
in (Tamburini et al., 2014), we formed a 35-feature
input vector inserting the data from 3 syllables be-
fore and after the syllable. In total this dataset is
composed of 4780 instance vectors.

The second problem is derived from an emotion
recognition task. The E-Carini corpus (Tesser et
al., 2005) contains 322 utterances annotated with
7 fundamental emotions. From each utterance
we extracted 1582 features using the OpenSMILE
package (Eyben et al., 2013) and the configuration
file contained in the package for extracting the In-
terSpeech 2010 challenge feature set.

4.3 Results

Given the four dataset described above, we per-
formed a number of experiments for comparing
KQC with a SVM classifier. The reference met-
rics were precision/recall/F1 for the three binary-
classified problems and the macro-averaged preci-
sion/recall/F1 for the Emotion multiclass dataset.
All the experiments were performed executing a
k-fold validation and optimising the classifiers pa-
rameters on a validation set. Table 1 outlines the
different performances of the two classifiers when
tested on the various evaluation datasets. KQC

KQC SVM
2SPIRALS RBF, σ=0.045 RBF, σ=0.02
5-fold valid. γ=0.5 C=6e5

P=1.0000 P=0.9532
R=0.9969 R=0.9776
F1=0.9984 F1=0.9650

DECSIN RBF, σ=0.3 RBF, σ=5e-5
5-fold valid. γ=0.5 C=1e3

P=0.9851 P=0.9827
R=0.9870 R=0.9805
F1=0.9860 F1=0.9816

KQC SVM
Prominence RBF, σ=18.0 LIN,
Detection γ=0.5 C=30
8-fold valid. P=0.8287 P=0.8200

R=0.8153 R=0.8200
F1=0.8216 F1=0.8200

Emotion RBF, σ=75.0 LIN,
Recognition γ=0.5 C=30
10-fold valid. P=0.9479 P=0.9793

R=0.9568 R=0.9728
F1=0.9523 F1=0.9760

Table 1: KQC and SVM results (and optimal pa-
rameter sets) for the four evaluation problems.

outperforms SVM in the experiments using arti-
ficial datasets and exhibit more or less the same
performances of SVM on the real problems.

5 Discussion and Conclusions

This paper presented a first attempt to produce
a general purpose classifier based on Quantum
Probability Theory. Considering the early exper-
iments from (Liu et al., 2013), KQC is more pow-
erful and gains better performance. The results ob-
tained on our experiments are quite encouraging
and we are tempted to answer ‘yes’ to the ques-
tion presented in the paper title.

This is a work in progress and the KQC is not
free from problems. Despite its potential to out-
perform SVM using linear kernels, it is very com-
plex to determine a tradeoff between the defini-
tion of decision boundaries with maximum mar-
gins and to maximise the classifier generalisation
abilities. A long optimisation process on the train-
ing set maximise the margins between classes but
could potentially lead to poor generalisations on
new data. Making more experiments and evalua-
tions in that directions is one of our future plans.
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