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Abstract

English. In the literature, subjectivity, po-
larity and irony detection have been of-
ten considered as independent tasks. How-
ever, since there are multiple ties between
them, they should be jointly addressed. In
this paper we propose a hierarchical sys-
tem, where the classifiers of each layer are
built upon an ensemble approach known as
Bayesian Model Averaging.

Italiano. In letteratura, le classificazioni
di soggettività, polarità e ironia sono
state spesso affrontate come task indipen-
denti. Tuttavia, dal momento che es-
istono tra loro diversi legami impliciti, tali
task dovrebbero essere affrontati congiun-
tamente. In questo lavoro proponiamo un
sistema gerarchico, dove i classificatori di
ogni layer sono costruiti ricorrendo ad un
approccio di ensemble learning noto come
Bayesian Model Averaging.

1 Introduction

Among the computational approaches for distin-
guishing subjective vs objective messages, ironic
vs not ironic and different classes of polarities, we
can point out two main research directions: the
first one focuses on machine learning algorithms
for automatic recognition (Pang et al., 2002; Chen
et al., 2008; Ye et al., 2009; Perea-Ortega et al.,
2013; Pozzi et al., 2013c; Pozzi et al., 2013a),
while the second one is aimed at the identifica-
tion of linguistic and metalinguistic features use-
ful for automatic detection (Carvalho et al., 2009;
Filatova, 2012; Pozzi et al., 2013b; Davidov et al.,
2010; Reyes et al., 2013). As far is concerned with
the machine learning perspective, although some
approaches are widely used in sentiment analysis,

they suffer from two main limitations that the pro-
posed paper intends to overcome. First, all the is-
sues related to sentiment analysis are usually ap-
proached by focusing on specific tasks separately,
i.e. subjectivity, polarity and irony are tackled
independently on each other. In a real context
all these issues should be addressed by a single
model able to distinguish at first if a message is
either subjective or objective, to subsequently ad-
dress polarity and irony detection and deal with the
potential relationships that could exists between
them. Second, within the sentiment analysis re-
search field there is no agreement on which ma-
chine learning methodology is better than others:
one learner could perform better than others in re-
spect of a given application domain, while a fur-
ther approach could outperform the others when
dealing with a given language or linguistic regis-
ter. In this paper we present a system based on a
multi-layer Bayesian ensemble learning that tries
to overcome the above mentioned limitations. The
focus is therefore intentionally on learning strate-
gies instead of on linguistic aspects to investigate
the potential of multiple and interconnected layers
of ensembles on real word Italian Twitter data.

2 Description of the system

2.1 Hierarchical Bayesian Model Averaging

In the literature, subjectivity, polarity and irony
detection have been often considered as indepen-
dent tasks. However, since there are multiple ties
between them, they should be jointly addressed.
Different works have usually treated subjectiv-
ity and polarity classification as two-stage binary
classification process, where the first level distin-
guishes subjective and objective (neutral) state-
ments, and the second level then further dis-
tinguishes subjectivity into: subjective-positive
/ subjective-negative (Refaee and Rieser, 2014;
Baugh, 2013). The results proposed in (Wilson et
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al., 2009) support the validity of this process, indi-
cating that the ability to recognize neutral classes
in the first place can greatly improve the perfor-
mance in distinguishing between positive and neg-
ative utterances at a later time. However, as briefly
introduced, also irony can give its contribution
in improving the classification performance. An
ironic message involves a shift in evaluative va-
lence, which can be treated in two ways: it could
be a shift from a literally positive to an intended
negative meaning, or a shift from a literally nega-
tive to an intended positive evaluation.

According to the above mentioned considera-
tions, we propose a hierarchical framework able
to jointly address subjectivity, polarity and irony
detection. An overview of the working system,
named Hierarchical Bayesian Model Averaging
(H-BMA), is presented in Figure 1.

1. Subjectivity classification 

2a. Polarity classification 2b. Irony detection 

reverse 

Objective Subjective 

Mixed Negative Positive Ironic Not ironic 

Figure 1: Hierarchical BMA.

Since subjectivity classification is usually the
most performing task in Sentiment Analysis, the
first level distinguishes subjective and objective
statements (neutral is supposed to be objective),
and the second level then distinguishes subjectiv-
ity into: subjective-positive / subjective-negative /
subjective-mixed (a sentence which is subjective,
positive and negative at the same time). Jointly
with polarity classification, irony detection is also
performed. If a given sentence is detected as
ironic, then its positive or negative polarity is re-
versed. On the other side, if the sentence is ironic
but its polarity has been classified as mixed, then
it is switched to negative. Thus a message s, iden-
tified as mixed by the polarity classification layer
and ironic (denoted as iro) by the irony detection
layer, is finally labelled as negative (−) due to the
conditional distribution

P (s = - | s = iro) >> P (s = + | s = iro) (1)

In the literature, subjectivity, polarity and irony
detection have been often addressed applying the

most varied machine learning approaches. As out-
lined in the Introduction, there is no agreement on
which methodology is better than others. The un-
certainty about which model represents the opti-
mal one in different context has been overcome in
this work by introducing Bayesian Model Averag-
ing (Pozzi et al., 2013a), a novel ensemble learn-
ing approach able to exploit the potentials of sev-
eral learners when predicting the labels for each
task (subjectivity, irony and polarity) of the hierar-
chical framework.

2.2 Bayesian Model Averaging
The most important limitation of traditional en-
semble approaches is that the models to be in-
cluded in the set of experts have uniform dis-
tributed weights regardless their reliability. How-
ever, the uncertainty left by data and models can
be filtered by considering the Bayesian paradigm.
In particular, through Bayesian Model Averaging
(BMA) all possible models in the hypothesis space
could be used when making predictions, consider-
ing their marginal prediction capabilities and their
reliability. Given a datasetD and a set C of classi-
fiers, the approach assigns to a message s the label
l(s) that maximizes:

P (l(s) | C,D) =

∑
i∈C

P (l(s) | i,D)P (i | D) (2)

where P (l(s) | i,D) is the marginal distribution
of the label predicted by classifier i and P (i | D)
denotes the posterior probability of model i. The
posterior P (i | D) can be computed as:

P (i | D) = P (D | i)P (i)∑
j∈C

P (D | j)P (j)
(3)

where P (i) is the prior probability of i and
P (D | i) is the model likelihood. In eq. 3,
P (i) and

∑
j∈C P (D | j)P (j) are assumed to be a

constant and therefore can be omitted. Therefore,
BMA assigns the label lBMA(s) to s according to
the following decision rule:

lBMA(s) = argmax
l(s)

P (l(m)|C,D)

=
∑
i∈C

P (l(s)|i,D)P (i|D)

=
∑
i∈C

P (l(s)|i,D)P (D|i)P (i)

=
∑
i∈C

P (l(s)|i,D)P (D|i)

(4)
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We proposed to replace the implicit measure
P (D | i) by an explicit estimate, known as F1-
measure, obtained during a preliminary evaluation
of the classifier i. In particular, by performing
a cross validation, each classifier can produce an
average measure stating how well a learning ma-
chine generalizes to unseen data. Considering φ-
folds for cross validating a classifier i, the measure
P (D | i) can be approximated as

P (D | i) ≈ 1

ι

φ∑
ι=1

2× Piι(D)×Riι(D)
Piι(D) +Riι(D)

(5)

where Piι(D) and Riι(D) denotes precision and
recall obtained by classifier i in fold ι.

In this way we tune the probabilistic claim of
each classifier in the ensemble according to its
ability to fit the training data. This approach al-
lows the uncertainty of each classifier to be taken
into account, avoiding over-confident inferences.

A crucial issue of most ensemble methods is re-
ferred to the selection of the optimal set of models
to be included in the ensemble. This is a combi-
natorial optimization problem over

∑N
p=1

N !
p!(N−p)!

possible solutions where N is the number of clas-
sifiers and p represents the dimension of each po-
tential ensemble. Several metrics have been pro-
posed in the literature to evaluate the contribu-
tion of classifiers to be included in the ensem-
ble (see (Partalas et al., 2010)). To the best of
our knowledge this measures are not suitable for a
Bayesian Ensemble, because they assume uniform
weight distribution of classifiers. In this study, we
used a heuristic able to compute the discriminative
marginal contribution that each classifier provides
with respect to a given ensemble. In order to illus-
trate this strategy, consider a simple case with two
classifiers named i and j. To evaluate the contri-
bution (gain) that the classifier i gives with respect
to j, we need to introduce two cases:

1. j incorrectly labels the sentence s, but i cor-
rectly tags it. This is the most important con-
tribution of i to the voting mechanism and
represents how much i is able to correct j’s
predictions;

2. Both i and j correctly label s. In this case, i
corroborates the hypothesis provided by j to
correctly label the sentence.

On the other hand, i could also bias the prediction
in the following cases:

3. j correctly labels sentence s, but i incorrectly
tags it. This is the most harmful contribution
in a voting mechanism and represents how
much i is able to negatively change the (cor-
rect) label provided by j.

4. Both i and j incorrectly label s. In this case,
i corroborates the hypothesis provided by j
leading to a double misclassification of s.

To formally represent the cases above, let com-
pute P (i = 1 | j = 0) as the number of in-
stances correctly classified by i over the number
of instances incorrectly classified by j (case 1)
and P (i = 1 | j = 1) the number of instances
correctly classified both by i over the number of
instances correctly classified by j (case 2). Anal-
ogously, let P (i = 0 | j = 1) be the number
of instances misclassified by i over the number
of instances correctly classified by j (case 3) and
P (i = 0 | j = 0) the number of instances mis-
classified by i over the number of instances mis-
classified also by j (case 4).

The contribution rSi of each classifier i belong-
ing to a given ensemble S ⊆ C can be esti-
mated as:

rSi =

∑
j∈{S\i}

∑
q∈{0,1}

P (i = 1 | j = q)P (j = q)∑
j∈{S\i}

∑
q∈{0,1}

P (i = 0 | j = q)P (j = q)

(6)
where P (j = q) is the prior of classifier j to ei-
ther correctly or incorrectly predict labels. In par-
ticular, P (j = 1) denotes the percentage of cor-
rectly classified instances (i.e. accuracy), while
P (j = 0) represents the rate of misclassified (i.e.
error rate).

Once the contribution of each classifier has been
computed, a further issue to be addressed concerns
with the search strategy for determining the opti-
mal ensemble composition. The proposed evalu-
ation function rSi is included in a greedy strategy
based on backward elimination: starting from an
initial set S = C, the contribution rSi is itera-
tively computed excluding at each step the clas-
sifier that achieves the lowest rSi . The proposed
strategy allows us to reduce the search space from∑n
p=1

n!
p!(n−p)! to n−1 potential candidates for de-

termining the optimal ensemble, because at each
step the classifier with the lowest rSi is disregarded
until the smallest combination is achieved. An-
other issue that concerns greedy selection is the
stop condition related to the search process, i.e.
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how many models should be included in the fi-
nal ensemble. The most common approach is
to perform the search until all models have been
removed from the ensemble and select the sub-
ensemble with the lowest error on the evaluation
set. Alternatively, other approaches select a fixed
number of models. In this paper, we perform a
backward selection until a local maxima of aver-
age classifier contribution is achieved. In partic-
ular, the backward elimination will continue un-
til the Average Classifier Contribution (ACC) of a
sub-ensemble with respect to the parent ensemble
will decrease. Indeed, when the average contribu-
tion decreases the parent ensemble corresponds to
a local maxima and therefore is accepted as op-
timal ensemble combination. More formally, an
ensemble S is accepted as optimal composition if
the following condition is satisfied:

ACC(S)

|S|
≥ ACC(S \ x)

|S − 1|
(7)

where ACC(S) is estimated as the average rSi
over the classifiers belonging to the ensemble S.
Note that the contribution of each classifier i is
computed according to the ensemble S, that is it-
eratively updated once the worst classifier is re-
moved. This leads to the definition of S charac-
terized by a decreasing size ranging from |S| =
N,N − 1, . . . , 1.

3 Results

In order to derive the feature space used for learn-
ing, a vector space model has been adopted. Each
sentence s is represented as a vector composed of
terms for which a corresponding weight w can be
computed as Boolean (0/1). No additional infor-
mation, such as linguistic cues, has been provided
to the learning approaches investigated in this pa-
per. The proposed Hierarchical Bayesian Model
Averaging (H-BMA) has been compared with tra-
ditional Bayesian Model Averaging (BMA) and
the baseline provided by Sentipolc 2014 organiz-
ers (Basile et al., 2014). The classifiers enclosed in
H-BMA and BMA for addressing the three tasks
are: Decision Tree (DT) (Quinlan, 1993), Sup-
port Vector Machines (SVM) (Vapnik and Vapnik,
1998), Multinomial Naive Bayes (MNB) (Lang-
ley et al., 1992) and K-Nearest Neighbors (KNN)
(Aha et al., 1991). The indices used for compar-
ing the approaches are Precision, Recall and F1-
measure.

Baseline BMA H-BMA∗

Subjectivity 0.4005 0.6173 0.6173
Polarity 0.3718 0.4907 0.5253
Irony 0.4441 0.5253 0.5261

Table 1: Comparison of F1-measure

The results reported in Table 1 show the F1-
measure performance on the three tasks∗. The
optimal ensemble composition of both BMA and
H-BMA has been obtained according the greedy
backward elimination strategy that lead to ensem-
ble composed of DT, SVM and MNB (for all the
three tasks). It can be easily noted that address-
ing Subjectivity, Polarity and Irony detection with
H-BMA, where tasks are modelled as interdepen-
dent, the performance tend to improve with respect
to the other approaches where the issues are tack-
led independently.

4 Discussion

In this paper, a novel system for jointly modelling
subjectivity, polarity and irony detection has been
introduced. The experimental results show the po-
tential of the proposed model to address interde-
pendent tasks with no additional information de-
rived by linguistic cues. The proposed solution
is particularly effective and efficient, thanks to its
ability to define a strategic combination of dif-
ferent classifiers through an accurate and com-
putationally efficient heuristic. However, an in-
creasing number of classifiers to be enclosed in
each ensemble in all the layers together with large
dataset open to deeper considerations in terms of
complexity. The selection of the initial ensemble
should consider the different complexities of each
single learner and inference algorithm, leading to
a reasonable trade-off between their contribution
in terms of accuracy and the related computational
time. A further ongoing research is related to the
linguistic aspects that could be taken into account
during the learning phase of the models in the en-
sembles. Specific linguistic cues able to charac-
terise subjectivity, polarity and irony could lead to
more accurate learning and prediction.

∗Official results provided to Sentipolc 2014 organizers
(Basile et al., 2014) lead to the following F1-measure per-
formance: Subjectivity 0.5901, Polarity 0.5341 and Irony
0.4771. The results reported in Table 1 differ from the ones
reported in the official ranking because of a mistake in send-
ing the correct predictions.
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