
IRADABE: Adapting English Lexicons
to the Italian Sentiment Polarity Classification task
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Abstract

English. Interest in the Sentiment Analy-
sis task has been growing in recent years
due to the importance of applications that
may benefit from such kind of informa-
tion. In this paper we addressed the polar-
ity classification task of Italian tweets by
using a supervised machine learning ap-
proach. We developed a set of features
and used them in a machine learning sys-
tem in order to decide if a tweet is subjec-
tive or objective. The polarity result itself
was then used as an additional feature to
determine whether a tweet contains iron-
ical content or not. We faced the lack of
resources in Italian by translating (mostly
automatically) existing resources for the
English language. Our model obtained
good results in the SentiPolC 2014 task,
being one of the best ranked systems.

Italiano. L’interesse nell’analisi auto-
matica dei sentimenti è continuamente
cresciuto negli ultimi anni per via
dell’importanza delle applicazioni in cui
questo tipo di analisi può essere utiliz-
zato. In quest’articolo descriviamo gli
esperimenti portati a termine nel campo
della classificazione di polarità di tweets
scritti in italiano, usando un approccio
basato sull’apprendimento automatico.
Un certo numero di criteri è stato uti-
lizzato come features per assegnare una
polarità e quindi determinare se i tweets

contengono dell’ironia o meno. Per questi
esperimenti, la mancanza di risorse (in
particolare di dizionari specializzati) è
stata compensata adattando, in gran parte
utilizzando delle tecniche di traduzione
automatica, delle risorse esistenti per la
lingua inglese. Il modello cosı̀ ottenuto è
stato uno dei migliori nel task SentiPolC a
Evalita 2014.

1 Introduction

Sentiment Analysis has been defined by (Liu,
2010) as “the computational study of opinions,
sentiments and emotions expressed in text”; so-
cial media is a rich source of data that can be pro-
cessed in order to detect subjectivity and classify
the sentiments expressed by users. The effective
extraction of such information is the main chal-
lenge in this research field. Sentiment analysis
is an opportunity for researchers in Natural Lan-
guage Processing (NLP) to make tangible progress
on all fronts of NLP, and potentially have a huge
practical impact. (Cambria et al., 2013)

In this paper we describe our participation to the
SentiPolC task in polarity and irony classification
of tweets in Italian. The paper is organized as fol-
lows: in Section 2 we briefly describe the related
works in order to understand how they influenced
our choices. In Section 3 we describe the fea-
tures and the classification system used. Results
obtained from our proposed model are shown in
Section 4. Finally in Section 5 we draw some con-
clusions based on the early analysis of the results.
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2 Related Work

Sentiment Analysis approaches are mainly based
on machine learning and lexicons. There is a con-
siderable amount of works related to sentiment
analysis and opinion mining ((Liu, 2010), (Pang
and Lee, 2008) in particular), all of them can be
classified in one of the general approaches pre-
sented by Cambria et. al in (Cambria et al., 2013):
keyword spotting, lexical affinity, statistical meth-
ods, and concept-based techniques. Keyword spot-
ting consists in classifying text by affect cate-
gories based on the presence of unambiguous af-
fect words such as happy , sad, afraid, and bored.
Lexical affinity does not only detects obvious af-
fect words, but also assigns to arbitrary words a
probable “affinity” to particular emotions. Statis-
tical methods are semantically weak, which means
that individually — with the exception of obvi-
ous affect keywords — a statistical model’s other
lexical or co-occurrence elements have little pre-
dictive value. Concept-based approaches: rely-
ing on large semantic knowledge bases, such ap-
proaches step away from blindly using keywords
and word co-occurrence counts, and instead rely
on the implicit meaning/features associated with
natural language concepts, superior to purely syn-
tactical techniques; concept-based approaches can
detect subtly expressed sentiments.

Respect to irony detection, Carvalho (Carvalho
et al., 2009) developed a system able to detect
irony using punctuation marks and emoticons in
Portuguese. Veale and Hao (Veale and Hao, 2010)
present a linguistic approach that takes into ac-
count the presence of heuristic clues in sentences
(e.g. “about as” as indicator of ironic simile).
Reyes et al. (Reyes et al., 2013) propose a model
based on four dimensions (signatures, unexpected-
ness, style, and emotional scenarios) that support
the idea that textual features can capture patterns
used in this kind of utterances.

3 Features and Classification Framework

In order to address the tasks of subjectiv-
ity/polarity/ironic classification, we decide taking
into account a statistical method that includes sev-
eral features: structural, syntactical and lexicon
based. We think that tweets belonging to the same
class can share this kind of features, below we de-
scribe briefly each one. In parentheses, we provide
the related id used in Table 4 and Table 5.

3.1 Surface Features
• nGrams features. We extracted the most fre-

quent unigrams, bigrams and trigrams from
the training corpus in order to have three dif-
ferent Bag of Words representations. This is
a simple feature widely used in text classifi-
cation. Only unigrams were finally used for
our participation in SentiPolC.

• Emoticons frequency. (emo) By using emoti-
cons, with few characters is possible to dis-
play one’s true feeling. Emoticons are vir-
tually required under certain circumstances
in text-based communication, where the ab-
sence of verbal and visual cues can other-
wise hide what was originally intended to be
humorous, sarcastic, ironic, and some times
negative (Wolf, 2000). We manually defined
three different sets of emoticons for the de-
tection of subjectivity, positiveness and neg-
ativeness, then we extracted the frequency of
each one in tweets.

• Negative Words frequency. (neg) Handling
negation can be an important concern in sen-
timent analysis, one of the main difficulties
is that negation can often be expressed in a
rather subtle way. We analyzed the train-
ing set and selected some words that trig-
gers negation (mai (never), non/no (not/no)),
avversative conjunction or adverbs (invece
(instead), ma (but)). We extracted their fre-
quency in each tweet. There are other ways
to deal with negations, for example to reverse
the polarity of the text if a negation word is
found, but we did not employ this technique.

• URL information frequency. (http) We ana-
lyzed the training set and we found that most
not-subjective, not-ironic tweets contained a
hyperlink, so we decided to take into account
this characteristic as a feature. In some cases
this kind of information is also present in
ironic tweets because users made an evalua-
tion of some content (text, video, image, etc.)
that they consider ironic and try to share with
others in order to express themselves.

• POS-based features. (pps) We decided to use
Part-of-speech (POS) tagging (the TreeTag-
ger1 implementation) to extract additional in-

1http://www.cis.uni-muenchen.de/
˜schmid/tools/TreeTagger/
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formation to determine the subjectivity of
tweets; in particular, we took into account
the presence of verbs conjugated at the first
and second persons (those endings in “-o”, “-
i”, “-amo”, “-ate/ete”) and personal pronouns
(“io”, “tu”, “noi”, “voi”, and their direct and
indirect object versions).

• Tweet Length and Uppercase ratio. (len,
shout) Although text in tweets only can con-
tain maximum 140 characters, we decided
to use the length in words of each tweet
like a feature, trying to reflect the fact that
ironic comments are often short. We took
into account also the ratio between the up-
percase words and length of the tweet, given
that many subjective and/or ironic comments
use uppercase words in order to express radi-
cal opinions about something, highlighting it
with the use of uppercase.

3.2 Lexicon-based Features
Many state-of-the-art works are based on lexicons
that assign to each words an empirical measure of
their polarity. Most lexicons however are available
only in English. We decided to use different lex-
icons and automatically translate them to Italian;
a thoroughful description of each one is out of the
scope of the present work and we refer the reader
to the relative existing literature. We found that
in some cases an Italian word can be translated in
different ways in English. We tested on the dev
set two possibilities: to keep for the Italian word
the max of the scores of the English translations
or their average. The test showed that the max al-
lowed to obtain a slightly better accuracy than the
average.

• SentiWordNet (SWN). Assigns to each synset
of WordNet three sentiment scores: posi-
tivity, negativity and objectivity. We used
only the positive and negative scores to derive
six features: positive/negative words count
(SWN+/-c), the sum of the positive scores
in the tweet (SWN+s), the sum of nega-
tive scores in the tweet (SWN-s), the bal-
ance (positive-negative) score of the tweet
(SWNb), and the standard deviation of Sen-
tiWN scores in the tweet (SWNdev).

• Hu-Liu Lexicon2. (HL) We derived three fea-
2http://www.cs.uic.edu/˜liub/FBS/

sentiment-analysis.html

tures from this lexicon: positive (HL+c) and
negative (HL-c) words count, balance (sum
of positive-negative words - HLb).

• AFINN Lexicon3. (AF) This lexicon con-
tains two word lists labeled with polarity va-
lences from -5 (negative) to +5 (positive). We
derived 5 features from this lexicon: posi-
tive/negative word count (AF+/-c), sum of
positive and negative scores (AF+/-s); over-
all balance of scores in the tweet (AFb).

• Whissel Dictionary (Whissell, 2009). (WH)
Our translation of this lexicon contains 8700
Italian words with values of Activation, Im-
agery and Pleasantness related to each one.
Range of scores go from 1 (most passive)
to 3 (most active). We derived six features:
average activation, imagery and pleasantness
(WH[aip]avg), and the standard deviation
of the respective scores (WH[aip]dev). We
thought that an elevate score in one of these
features may indicate an out-of-context word,
thus indicating a possibly ironic comment.

• Italian “Taboo Words”. (TAB) Knowing the
function of taboo words to trigger humor,
catharsis, or to boost opinions (Zhou, 2010),
we decided to use a list of taboo italian words
that we extracted from Wiktionary4.

• Counter-Factuality (Reyes et al., 2013). (CF)
We use the frequency of discursive terms that
hint at opposition or contradiction in a text
such as “about” and “nevertheless”.

• Temporal Compression (Reyes et al., 2013).
(TC) We use the frequency of terms that iden-
tify elements related to opposition in time,
i.e. terms that indicate an abrupt change in
a narrative.

Moreover, in the irony subtask we used as fea-
tures our results of the subjectivity (subj) and po-
larity (pol) classification subtasks.

3.3 Classification Framework

We used the nu-SVM (Schölkopf et al., 2000) im-
plementation by LibSVM (Chang and Lin, 2011),

3https://github.com/abromberg/
sentiment\_analysis/blob/master/AFINN/
AFINN-111.txt

4http://it.wiktionary.org/wiki/
Categoria:Parole_volgari-IT
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with the nu parameter set to the standard value
(0.5), with a RBF kernel. The classification was
carried out in three steps: in the first one, the
system classifies the tweet into subjective or not.
The result of the subjectivity is passed as a fea-
ture to the second classification step that classifies
the tweets as positive or negative. Finally, the re-
sults of subjectivity and polarity classification are
passed to the final classifier that is used to detect
irony. In the constrained run, we used the full Sen-
tiPolC training set (Basile et al., 2014). In the
unconstrained run, we integrated into the training
set 493 additional tweets that include the hashtag
#ironia or were published on an ironical/satirical
account (for instance, the @spinozait account5).
We randomly subsampled the training set in order
to obtain a balanced training set (with 50%/50%
ratio for the ironic/not ironic tweets).

The additional tweets retrieved from
@spinozait and those including the hashtag
#ironia were automatically assigned the labels “1”
for subjectivity and irony. The labels for polarity
were automatically assigned using the model
trained on the devset. This means that in some
cases the combination of labels does not corre-
spond to the labels allowed by the task guidelines
(there are ironic tweets with mixed or neutral
polarity). Therefore, we did not use the polarity
information as feature for the unconstrained run.

4 Results

We evaluated our approach on the SentiPolC
datasets, composed by approximately 4,000
italian tweets for training and 1,700 for test; each
tweet on the training subset was labeled as objec-
tive/subjective, positive/neutral/negative/mixed,
ironic/non-ironic and finally if the topic of the
tweet was concern to politics. In Table 4 we
show the results obtained on the training set
using 10-fold cross validation. The official results
are shown in Table 4 (Basile et al., 2014). The
differences between the results obtained for the
training and the test set can be explained by the
fact that our system was not able to retrieve 186
tweets. Our evaluation on Weka on the partial
set shows 80% F-measure in irony detection.
However, we suppose that the other participants
had similar problems. The results in Table 4 have
been calculated only on the retrieved tweets of the
training set.

5https://twitter.com/spinozait

Subj Pol(+) Pol(-) Iro
Precision 0.765 0.767 0.668 0.820

Recall 0.777 0.774 0.670 0.828
F-Measure 0.764 0.743 0.668 0.824

Table 1: Results of our model on training set

Constrained
Subj Pol(+) Pol(-) Iro

“1”
P 0.8284 0.7265 0.6822 0.2400
R 0.7862 0.2998 0.5213 0.2521

F-m 0.8067 0.4245 0.5910 0.2459
Comb F-m 0.6706 0.6347 0.5415

Table 2: Results of our model on test set Con-
strained Run (official results).

We carried out an analysis of the features using
the information gain feature selection algorithm
provided by Weka. We show in Table 4 and Ta-
ble 5 the ten best dictionary-based features, in the
test and training set respectively.

From these results we can see that
SentiWordNet-based features worked very
well in subjectivity prediction, more than features
like the emoticons which we expected to have
an important role. In the positive polarity task,
emoticons were an important feature however,
together with the positive word counts (or sum
of positive scores) for AFINN, Hu-Liu and
SentiWordNet lexicons. The respective negative
word based features worked well also in the
negative polarity prediction task. In the irony
task we observed some discrepancies between
the results obtained in the training set and those
obtained in the test set. In fact, our intuition of
finding “anomalies” using standard deviation of
Whissell-based features worked particularly well
in the training set, but we did not found the same
kind of “anomalies” in the test set. In the test set
we found instead a prevalence of features that

Unconstrained
Subj Pol(+) Pol(-) Iro

“1”
P 0.8955 0.4565 0.6266 0.2387
R 0.5989 0.5556 0.5040 0.4202

F-m 0.7178 0.5012 0.5587 0.3044
Comb F-m 0.6464 0.6108 0.5513

Table 3: Results of our model on test set Uncon-
strained Run(official results).
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Subj Pol(+) Pol(-) Iro
1 http SWNb SWN-s subj
2 SWN+c AFb SWN-c http
3 SWN-s emo HL-c HL-c
4 SWN+s AF+s AF-s pol
5 SWN-c HLb SWNb AF-c
6 SWNdev SWN+s HLb HLb
7 AFb AF+c AF-c SWN-s
8 neg WHidev neg AFb
9 AF+s HL+c CF AF-s

10 pps WHpdev AFb SWNb

Table 4: Best ranked dictionary-based features for
each subtask, according to their information gain
values (test set).

Subj Pol(+) Pol(-) Iro
1 http AFb SWN-s subj
2 SWN+c AF+s AF-s http
3 SWN+s SWNb HL-c pol
4 SWNdev emo SWN-c WHpdev
5 SWN-c SWN+s AF-c WHadev
6 SWN-s HLb SWNb WHidev
7 AFb AF+c AFb len
8 SWNb HL+c SWNdev SWN+c
9 AF+s http SWN+c SWN-c

10 shout len HLb TAB

Table 5: Best ranked dictionary-based features for
each subtask, according to their information gain
values (training set).

indicates negative words (HL-c, AF-c, SWN-s,
AF-s). In both train and test set we observed
that the most important features that characterize
irony were subjectivity and mixed polarity, while
the presence of web addresses was a strong clue
to the tweet being not ironic, or objective. The
importance of web related features was indicated
also by the high information gain of fragments of
web addresses (not included in the tables), such
as “http”, “ly”, “it”, “fb”, etc. Further analysis of
the results showed that Italian politics have a great
weight in the training set, with keywords like
“governo” or “Monti” conveying a high predictive
power.

5 Conclusions and Future Work

An analysis of the features using information gain
showed that SentiWordNet was an important re-
source for the detection of subjectivity, and in
general the translated lexicons were very useful.

Many of the features related to the detection of
web addresses were also very important, indicat-
ing that the training and test sets were flawed by
the presence of such addresses. Finally, we no-
ticed that the lexicon-based features using stan-
dard deviation performed particularly well on the
irony detection task, at least in the training set, in-
dicating that our intuition of finding “anomalies”
was right. We plan to work furtherly in this direc-
tion as to detect anomalies in content or changes in
polarity from one fragment of text to another and
integrate them as further features.
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