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Abstract

English. This paper presents the appli-
cation of a Kernel Quantum Classifier, a
new general-purpose classifier based on
quantum probability theory, in the domain
of emotion recognition. It participates to
the EVALITA 2014 Emotion Recognition
Challenge exhibiting relatively good re-
sults and ranking at the first place in the
challenge.

Italiano. Questo contributo presenta
l’applicazione di un classificatore quan-
tistico basato su kernel, un nuovo clas-
sificatore basato sulla teoria della prob-
abilità quantistica, nel dominio del ri-
conoscimento delle emozioni. Ha parteci-
pato alla campagna di valutazione sul ri-
conoscimento delle emozioni nell’ambito
di EVALITA 2014 ottenendo buoni risul-
tati e classificandosi al primo posto.

1 Introduction

Quantum Mechanics Theory (QMT) is one of the
most successful theory in modern science. De-
spite its ability to properly describe most natural
phenomena in the physics realm, the attempts to
prove its effectiveness in other domains remain
quite limited.

This paper presents the application of a Kernel
Quantum Classifier, a new general-purpose clas-
sifier based on quantum probability theory, in the
domain of emotion recognition.

With regard to this specific evaluation chal-
lenge, we did not develop any particular technique
tailored to emotion recognition, but we applied
a “brute force” approach to this problem as de-
scribed, for example, in (Schuller et al., 2009).
A very large set of general acoustic features has

been automatically extracted from speech wave-
forms and the emotion detection task has been put
totally in charge of the classifier.

In section 2 we will describe the proposed clas-
sifier, in section 3 the evaluation results will be
analysed comparing them with the results obtained
using a state-of-the-art classifier applied to the
same task and in section 4 we will draw some pro-
visional conclusions.

2 System description

2.1 Quantum Probability Theory

A quantum state denotes an unobservable distribu-
tion which gives rise to various observable physi-
cal quantities (Yeang, 2010). Mathematically it is
a vector in a complex Hilbert space. It can be writ-
ten in Dirac notation as |ψ〉 =

∑n
1 λj |ej〉where

λj are complex numbers and the |ej〉 are the ba-
sis of the Hilbert space (|.〉 is a column vector, or
a ket, while 〈.| is a row vector, or a bra). Using
this notation the inner product between two state
vectors can be expressed as 〈ψ|φ〉 and the outer
product as |ψ〉 〈φ|.
|ψ〉 is not directly observable but can be probed

through measurements. The probability of observ-
ing the elementary event |ej〉 is | 〈ej |ψ〉 |2 = |λj |2
and the probability of |ψ〉 collapsing on |ej〉 is
P (ej) = |λj |2/

∑n
1 |λi|2 (note that

∑n
1 |λi|2 =

‖|ψ〉‖2 where ‖·‖ is the vector norm). General
events are subspaces of the Hilbert space.

A matrix can be defined as a unitary operator if
and only if UU † = I = U †U , where † indicates
the Hermitian conjugate. In quantum probability
theory unitary operators can be used to evolve a
quantum system or to change the state/space basis:
|ψ′〉 = U |ψ〉.

Quantum probability theory (see (Vedral, 2007)
for a complete introduction) extends standard kol-
mogorovian probability theory and it is in princi-
ple adaptable to any discipline.
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2.2 Kernel Quantum Classifier

(Liu et al., 2013) presented a quantum classifier
based on the early work of (Chen, 2002). Given
an Hilbert space of dimension n = ni+no, where
ni is the number of input features and no is the
number of output classes, they use a unitary oper-
ator U to project the input state contained in the
subspace spanned by the first ni basis vectors into
an output state contained in the subspace spanned
by the last no basis vectors: |ψo〉 = U

∣∣ψi
〉
. Input,∣∣ψi

〉
, and output, |ψo〉, states are real vectors, the

former having only the first ni components differ-
ent from 0 (assigned to the problem input features
of every instance) and the latter only the last no
components. From |ψo〉 they compute the proba-
bility of each class as
P (cj) = |ψo

ni+j |2/
∑no

1 |ψo
ni+i|2 for j = 1..no.

The unitary operatorU for performing instances
classification can be obtained by minimising the
loss function

err(T ) = 1/
∑|T |

j=1 〈ψo
j |ψt

j〉 ,

where T is the training set and
∣∣ψt
〉

is the target
vector for output probabilities (all zeros except 1
for the target class) for every instance k, using
standard optimisation techniques such as Conju-
gate Gradient (Hestenes, Stiefel, 1952), L-BFGS
(Liu, Nocedal, 1989) or ASA (Ingber, 1989).

This classifier exhibits interesting properties
managing a classical non-linear problem, the XOR
problem, but the simplicity and the low power of
this classifier emerge quite clearly when we test
it on difficult, though linearly separable, classifi-
cation problems or on non-linear problems. The
classifier is not always able to properly divide the
input space into different regions corresponding to
the required classes. Moreover, all the decision
boundaries have to cross the origin of the feature
space, a very limiting constraint for general classi-
fication problems, and problems that require strict
non-linear decision boundaries cannot be success-
fully handled by this classifier.

A widely used technique to transform a linear
classifier into a non-linear one involves the use of
the “kernel trick”. A non-linearly separable prob-
lem in the input space can be mapped to a higher-
dimensional space where the decision borders be-
tween classes might be linear. We can do that
through the mapping function φ : Rn → Rm,
with m > n, that maps an input state vector

∣∣ψi
〉

to a new space. The interesting thing is that in

the new space, for some particular mappings, the
inner product can be calculated by using kernel
functions k(x, y) = 〈φ(x), φ(y)〉 without explic-
itly computing the mapping φ of the two original
vectors.

We can express the unitary operator performing
the classification process as a combination of the
training input vectors in the new features space

|ψo〉 = U |φ(ψi)〉

|ψo〉 =
∑|T |

j=1 |αj〉 〈φ(ψi
j)| |φ(ψi)〉

|ψo〉 =
∑|T |

j=1 |αj〉 〈φ(ψi
j)|φ(ψi)〉

that can be rewritten using the kernel and adding a
bias term |α0〉as:

|ψo〉 = |α0〉+
|T |∑
j=1

|αj〉 k(ψi
j , ψ

i) (1)

In this new formulation we have to obtain all the
|αj〉 vectors, j = 0, ..., |T |, through an optimisa-
tion process similar to the one of the previous case,
minimising a standard euclidean loss function

err(T ) =

|T |∑
j=1

no∑
k=1

(
Pj(ck)− ψt

j(ni+k)

)2
+γ

|T |∑
j=0

‖|αj〉‖.

using a numerical optimisation algorithm, L-
BFGS in our experiments, where P (c) is the class
probability defined above and γ

∑
‖|αj〉‖ is an L2

regularisation term on model parameters (the real
and imaginary parts of |αj〉 components).

Once learned a good model from the training
set T , represented by the |αj〉 vectors, we can use
equation (1) and the definition of class probability
for classifying new instance vectors.

It is worth noting that the KQC proposed here
involves a large number of variables during the
optimisation process (namely, 2 ∗ no ∗ (|T | + 1))
that depends linearly on the number of instances
in the training set T . In order to build a classifier
applicable to real problems, we have to introduce
special techniques to efficiently compute the gra-
dient needed by optimisation methods. We relied
on Automatic Differentiation (Griewank, Walther,
2008), avoiding any gradient approximation using
finite differences that would require a very large
number of error function evaluations. Using such
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Automatic System
Gold Std. ang dis fea joy sad sur

ang 12 9 1 0 1 7
dis 0 11 3 0 5 2
fea 2 4 5 3 15 1
joy 9 8 1 5 1 6
sad 0 2 0 1 26 1
sur 2 1 1 1 19 6

Table 1: Confusion matrix between the gold stan-
dard and the KQC.

techniques the training times of KQC are compa-
rable to those of other machine learning methods.

Please, see (Tamburini, in press) for a complete
presentation and evaluation of this system.

3 EVALITA 2014 ERT results

We applied the KQC to the EVALITA 2014 Emo-
tion Recognition Task without adapting the system
in any way and without devising any specific tech-
nique for emotion detection. We participated only
at the “closed database” subtask that is devoted to
evaluate how much information can be extracted
from material coming from a single, professional
source of information whose explicit task is to por-
tray emotions and obtain models capable of gener-
alizing to unseen subjects.

As we said in the introduction, we applied a
“brute force” approach to this problem: we ex-
tracted 1582 features from each utterance using
the OpenSMILE package (Eyben et al., 2013) and
the configuration file contained in the package
for extracting the InterSpeech 2010 Paralinguistic
Challenge feature set (Schuller et al., 2010).

In this case ni = 1582 and no = 6; we ex-
cluded from the process all the utterances belong-
ing to the “neutral” class following the task guide-
lines indications. After a training session using all
the utterances and classifications in the Develop-
ment Set provided by the organisation, we tested
the trained classifier on the Test Set executing ten
different runs. The outputs of the ten classification
processes were mixed and the final results submit-
ted for the evaluation contained the most frequent
class chosen by the ten runs for each utterance
contained in the Test Set.

The official results assigned the first place to
this classifier with a classification accuracy of
36.11%. Table 1 outline the confusion matrix be-
tween classes.

Automatic System
Gold Std. ang dis fea joy sad sur

ang 16 1 1 2 2 8
dis 6 8 7 0 5 4
fea 3 0 6 4 15 2
joy 10 6 4 7 0 3
sad 0 3 1 1 24 1
sur 2 2 1 1 19 5

Table 2: Confusion matrix between the gold stan-
dard and the SVM multiclass classifier proposed
in (Joachims et al., 2009).

We performed some other experiments using a
different classifier: the standard Support Vector
Machine (SVM) multiclass classifier proposed in
(Joachims et al., 2009). This widely diffused state-
of-the-art classifier exhibit more or less the same
performances of the KQC: 36.67% of accuracy
in classifying the six emotions considered in the
EVALITA 2014 ERT challenge (the best results
are obtained by using a linear kernel and C = 30).
Table 2 shows the confusion matrix for the SVM
multiclass classifier.

4 Discussion and Conclusions

Even if a 36.11% of accuracy allowed this system
to be the most accurate in the evaluation campaign
(out of two participants), such accuracy is very
low; it is much better than the random baseline
(16.67%), but certainly not enough for real classi-
fication problems. Some emotions, anger, disgust
and sadness, can be detected with better reliabil-
ity, but the other emotions, namely fear, joy and
surprise, present classification results very unsat-
isfactory. The experiments conducted with a dif-
ferent but state-of-the-art classifier, namely a SVM
multiclass classifier, present more or less the same
picture.

The research question posed in the guidelines
“to establish how much information can be ex-
tracted from material coming from a single, pro-
fessional source of information whose explicit
task is to portray emotions and obtain models ca-
pable of generalizing to unseen subjects” cannot
be answered, in our opinion, positively. Emotional
recordings taken from a single, even professional,
speaker, do not seem to provide enough informa-
tion to generalise the emotion recognition to other
speakers.

Despite the design of KQC is a work in progress
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and the it is not free from problems, it exhibits
good classification performances, very similar to
a state-of-the-art multiclass classifier.
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