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Abstract

English. This paper describes the de-

sign, data and evaluation results of the

speech activity detection and speaker lo-

calization task in domestic environments

(SASLODOM) in the framework of the

EVALITA 2014 evaluation campaign. Do-

mestic environments are particularly chal-

lenging for distant speech recognition and

audio processing in general due to re-

verberation, the variety of background

noises, the presence of interfering sources

as well as the propagation of acoustic

events across rooms. In this context, a

crucial goal of the front-end processing is

the detection and localization of speech

events generated by users within the var-

ious rooms. The SASLODOM task aims

at evaluating solutions for both activity de-

tection and source localization on corpora

of multi-channel data representing realis-

tic domestic scenes.

Italiano. In questo articolo viene pre-

sentato il database, le metriche e i risul-

tati della valutazione del task SASLDOM

all’interno della campagna di valutazione

EVALITA 2014. Gli ambienti domes-

tici sono particolarmente sfidanti per le

tecnologie di riconoscimento vocale ed

elaborazione audio in genere, a causa

del riverbero, della varietá di rumore di

fondo, della presenza di interferenti e

infine a causa della propagazione degli

eventi acustico attraverso le stanze. In

questo contesto un aspetto cruciale del

front-end acustico è la capacità di rilevare

e localizzare gli eventi acustici generati

dall’utente nelle varie stanze. Il task

SASLODOM mira a valutare soluzioni di

rilevamento del parlato e localizzazione

della sorgente su due database multi-

canale che rappresentano tipiche scene

domestiche.

1 Introduction

The SASLODOM challenge, within the frame-

work of EVALITA 2014, addresses the problem

of the detection in time and localization in space

of speech events in domestic contexts. A con-

siderable number of applications could benefit

from natural speech interaction with distant mi-

crophones (Wölfel and McDonough, 2009). In

particular, the possibility to control by voice the

devices and appliances of an automated home has

recently received a significantly growing interest.

This scenario is being targeted by the EU project

DIRHA1 (Distant-speech Interaction for Robust

Home Applications) focusing on motor-impaired

users, whose life quality can considerably improve

thanks to speech-driven automated home.

A desirable property of a distant-speech inter-

action system in domestic contexts is the capabil-

ity to be “always-listening” and to always accept

commands or requests from the users. This feature

represents a noteworthy challenge, as the system

must be able to keep as low as possible the rate of

false alarms, generated by acoustic events that are

not intended to convey any message addressed to

the recognition system, while at the same time it

must be able to detect any speech command, in-

dependently of the current environmental condi-

tions and without introducing constraints on the

user position and orientation. Hence, fundamen-

tal features of the front-end processing component

are a robust Speech Activity Detection (SAD) and

Source LOCalization (SLOC). A correct identifi-

cation of time boundaries, room and spatial coor-

dinates of each speech event is essential for the tar-

geted interactive scenario. In fact, the efficiency of

1http://dirha.fbk.eu
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a dialogue manager or of a command-and-control

system, strongly depends on the performance of

the ASR system in the right room: in several cases

the system must be able to serve the user also on

the basis of the location where the speech com-

mand has been given (i.e., the command “open

the window” implies that the window to open is

located in the same room.). The critical role of

the SAD component both in distant-talking ASR

and in acoustic event classification has been stud-

ied in (Macho et al., 2005).

There is a wide literature addressing SAD tech-

niques. Early works on specific speech/non-

speech segmentation focused on close talking in-

teraction and were based on the use of energy

thresholding and zero-crossing features (Junqua

et al., 1994), in some cases exploring the use

of noise reduction (Bouquin-Jeannes and Fau-

con, 1995). Also, well-known features among

the speech recognition community, like MFCCs

and PLP, have been used for audio event detec-

tion (Portelo et al., 2008; Trancoso et al., 2009).

Additionally, techniques based on Spectral Vari-

ation Functions (SVF) (DeMori, 1998) or other

spectro-temporal features (Pham et al., 2008) can

be exploited to discriminate speech from station-

ary background noise, even under unfavorable

SNR conditions. Various machine learning meth-

ods (Shin et al., 2010), are used to provide a final

classification of the audio events such as Gaussian

Mixture Models (GMMs) (Chu et al., 2004), Sup-

port Vector Machines (SVMs) (Guo and Li, 2003),

Hidden Markov Models (HMMs) and Bayesian

Networks (Cai et al., 2006). Recently, solutions

relying on Deep Neural Networks (DNN) have

been employed (Zhang and Wu, 2013). Finally,

the availability of multiple acquisition channels

permits the implementation of multi-channel pro-

cessing (Wrigley et al., 2005; Dines et al., 2006),

or the adoption of different feature sets, eventually

based on the spatial coherence at two or more mi-

crophones (Armani et al., 2003). In general the re-

liability of the resulting system can be highly cor-

related to the SNR of the input, depending on the

environmental noise and the distance from speaker

to microphones. In (Ramirez et al., 2005), more

details are given on the problem, together with a

good introductory survey of the audio event detec-

tion techniques explored more recently.

Also SLOC technologies have been deeply in-

vestigated and several different approaches are

available in the literature (Wölfel and Mc-

Donough, 2009; Brandstein and Ward, 2001;

Huang and Benesty, 2004). In general, SLOC al-

gorithms are based on the estimation of the Time

Differences Of Arrivals (TDOA) at two or more

microphones, from which the source location is

inferred by applying geometrical considerations.

The Generalized Cross-Correlation Phase Trans-

form (GCC-PHAT) (Knapp and Carter, 1976), is

the most common technique for estimating the

TDOA at two microphones. In multi-microphone

configurations SLOC techniques based on acous-

tic maps, like the Global Coherence Field

(GCF) (DeMori, 1998) also known as SRP-

PHAT (Brandstein and Ward, 2001), are particu-

larly effective in representing the spatial distribu-

tion of sources. Under the assumption that sources

are sparse in time and space short-term spatio-

temporal clustering has been successfully applied

to the localization of multiple sources (Di Claudio

et al., 2000; Lathoud and Odobez, 2007). Sequen-

tial bayesian methods and particle filtering (Aru-

lampalam and Maskell, 2002; Vermaak and Blake,

2001; Lehman and Johansson, 2007) have also

been experimented successfully on tracking of sin-

gle as well as multiple sources (Fallon, 2008; Lee

et al., 2010). Beside the above-mentioned meth-

ods, more recently approaches for Blind Source

Separation (BSS), relying on Independent Com-

ponent Analysis (ICA) (H. Sawada et al., 2003;

Loesch et al., 2009) or on sparsity-aware pro-

cessing of the cross-spectrum (Araki et al., 2009;

Nesta and Omologo, 2011), have been applied to

the estimation of the TDOA in presence of multi-

ple sources (Brutti and Nesta, 2013).

1.1 Motivation

One of the main issues of the multi-room sce-

nario typical of the domestic context, is that acous-

tic waves propagate from one room to another

(e.g. through open doors), which represents an

intrinsic cause of ambiguity on the location of

each sound source, especially when concurring

events can occur in different rooms. Furthermore,

the environmental conditions of a domestic scene

(e.g., background noise, interferes, noise sources,

number of users, etc...) significantly vary over

time, from very quiet conditions to very noisy

and challenging situations, requiring algorithmic

solutions capable of coping with such variability

while preserving good performance. In DIRHA,
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these challenges are tackled by distributing mul-

tiple microphones in the rooms of an apartment.

This approach permits the implementation of ef-

fective SLOC solutions to identify the actual lo-

cation of event generation as well as the develop-

ment of robust strategies for event detection and

speech recognition, for instance based on chan-

nel or model selection (Wolf and Nadeu, 2013;

Sehr et al., 2010). The joint use of SLOC and

SAD technologies is hence required in the ad-

dressed scenario in order to realize a multi-room

SLOC and SAD. Although SAD and SLOC tech-

nologies have been widely investigated over the

decades and several effective solutions are avail-

able in the literature, the peculiarities of the do-

mestic scenarios pose significant challenges for

these technologies. This fact motivated the cre-

ation of the DIRHA corpora and the definition of

the SASLODOM evaluation tasks.

2 The DIRHA corpora

Figure 1: Layout of the apartment used for the col-

lection of the DIRHA corpora. Circles indicate

the microphone positions. Squares and arrows in-

dicate the possible positions and orientations of

acoustic events in the simulated corpus.

The general scenario addressed in the DIRHA

project refers to a real automated apartment con-

sisting of 5 rooms. In each room a set of micro-

phones is deployed on the walls and the ceiling,

as shown in Figure 1. 15 microphones are located

in the Livingroom (bottom-left), 13 in the Kitchen

(top-left), 7 in the Bedroom (bottom-right), 3 in

the Bathroom (bottom-middle) and 2 in the Cor-

ridor (central). A star-shaped 6-microphone ar-

ray is mounted on the ceiling of the Livingroom

and of the Kitchen, where the majority of the

speech events is expected to occur in every-day

interactions. Overall 40 microphones monitor the

house. For this target scenario, both simulated and

real corpora of multi-channel multi-lingual acous-

tic data were created, in order to reproduce a va-

riety of typical domestic scenes for experimental

purposes (Cristoforetti et al., 2014). For each of

the 40 microphones a 48 kHz/16 bit WAV audio

file is available, fully synchronized and aligned at

sample level with the other channels. Detailed an-

notations in terms of acoustic events, source posi-

tions and other information are also available. The

corpora are publicly available upon request to the

DIRHA consortium. The next sections provide a

brief description of the two corpora. Table 1 sum-

marizes the main differences between the simu-

lated and real data collections.

Real Simulations

source human loudspeaker

movement moving static

system feedback yes no

background quiet various

noise source rate low high

overlapping events no yes

Table 1: Main differences between the real and

simulated scenes.

2.1 The DIRHA SimCorpus

First of all, for a set of predefined positions and

orientations (represented by squares and arrows in

Figure 1) Room Impulse Responses (RIR) were

measured for the 40 microphones by exciting the

environment with long Exponential Sine Sweep

(ESS) signals (Farina, 2000) reproduced by a

loudspeaker. This procedure ensures high SNR

and remarkable robustness against harmonic dis-

tortions (Ravanelli et al., 2012).

Speech events including sentences uttered by

120 speakers in 4 languages (Greek, German, Ital-

ian and Portuguese) were recorded using high-

quality close-talking microphones and ensuring

very high SNR and absence of artifacts. These

sentences are typical commands for the domestic

system, phonetically rich sentences and conversa-

tional speech. For what concerns “non-speech”

events, they were selected from Logic Pro and

from the Freesound2 high-quality database, con-

2http://www.freesound.org/
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sidering those sounds typical of domestic environ-

ments. Moreover, a selection of copyright-free ra-

dio shows, music and movies were used to sim-

ulate radio and television sounds. To increase

the realism of the acoustic sequences, 21 com-

mon home-noise sources (shower, washing ma-

chine, oven, vacuum cleaner, etc.) were directly

recorded by the distributed microphone network

of the apartment.

Given the ingredients described above, the

DIRHA SimCorpus (Cristoforetti et al., 2014) was

created as a collection of acoustic scenes with a

duration of 60 seconds. Each scene consists of

real background noise, with random dynamics, to

which a variety of localized acoustic and speech

events are superimposed. Events occur randomly

in time and in space, constrained on the grid of

the predefined positions and orientations for which

RIR measurements are available. The acoustic

wave propagation from the sound source to each

single microphone is simulated by convolving dry

signals with the respective RIR.

Data set Development Test

Simul

40 scenes 40 scenes

40 min. 40 min.

23.4% speech 23.7% speech

Real

12 scenes 10 scenes

11 min. 10 min. 30 sec.

9% speech 17% speech

Table 2: Development and test material used in the

SASLODOM task.

2.2 Real corpus

Besides the simulated scenes, a real data set was

derived from excerpts of a Wizard-of-Oz data col-

lection, resulting in 22 scenes, each one approxi-

mately 60 second long. Each real scene includes

a human speaker uttering typical commands while

moving within the Livingroom and the Kitchen.

The background is rather quiet (in particular if

compared to the simulated scenes), and the main

noise of interference is the system output repro-

duced by the Wizard through a loudspeaker in-

stalled on the ceiling of the Livingroom or of the

Kitchen (e.g., the replies of the system to the user

commands). The reference signal of the system

output is also made available.

2.3 Data used in the SASLODOM task

For the SASLODOM task a subset of the simu-

lated data, consisting in 80 scenes in Italian, was

considered. The scenes are selected in such a way

that different degrees of complexity are covered.

Notice that the language is probably not relevant

for the addressed technologies.For what regards

the real data, the full data set is used since it is

relatively small and in Italian.

The data are evenly split in two sets for devel-

opment and tests. Table 2 summarizes the amount

of data used in the evaluation and the ratio be-

tween the total length of speech events over the

full datasets duration.

3 The Task

Given the multi-room domestic scenario ad-

dressed in the DIRHA project, the goal of the

SASLODOM task is, for each speech event, to:

• provide the corresponding time boundaries,

• determine the room where it was generated,

• derive the spatial coordinates of the speaker.

When considering a specific room, speech events

occurring in other rooms must be discarded. Sim-

ilarly, any other noise event must be neglected.

In case a speech event occurring in a given room

is associated by the system to another room, this

will result in a false alarm and a deletion. Al-

though speech and noise events may occur any-

where in the apartment, the evaluation considers

only speech events generated in the Livingroom

and Kitchen (i.e., speech events in other rooms

must be discarded). This choice is motivated by

the fact that a small number of microphones is

available in the other rooms.

To allow the participation of laboratories with-

out effective solution for SLOC, a subtask is de-

fined where the localization stage does not require

the estimation of the speaker coordinates but just

the identification of the room where the event oc-

curred (localization is implicit in the SAD compo-

nent). This subtask is referred to as SAD.

4 System Evaluation

Reference speaker positions and speech activities

are reported every 50 ms in a reference file, to-

gether with the annotation of other acoustic events

occurring in the 5 rooms. The system under eval-

uation delivers, for each room and each scene, a
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similar hypothesis file with a time resolution of at

least 50 ms. If the time resolution of the hypothe-

ses is higher, the evaluation tool averages the esti-

mated coordinates.

In the evaluation step, the hypothesis sequence

and the reference file are compared one each other.

For each reference line, the closest (in time) hy-

pothesis line is selected and one of the four events

below is generated:

• Deletion: no hypothesis available for a given

reference line (SAD);

• False Alarm: an hypothesis is produced when

there is no speech activity in the targeted

room (SAD);

• Fine error: the distance between the esti-

mated source position and the reference is

smaller than 50 cm;

• Gross error: the distance between the esti-

mated source position and the reference is

larger than 50 cm.

4.1 Metrics

Given the classifications listed above, a series of

metrics is computed to characterize the perfor-

mance of the system under evaluation:

• Time boundaries accuracy:

– Deletion Rate: number of missing hy-

potheses over all speech frames.

– False Alarm Rate: number of false

alarms over all non-speech frames.

• Event-based Detection performance:

– Precision of the SAD component.

– Recall of the SAD component.

– F score.

Systems are ranked according to theOverall SAD

Detection error, defined as:

SAD =
Nfa + βNdel
Nnsp + βNsp

,

where Ndel, Nfa are the total numbers of dele-

tion and false alarms respectively, Nsp is the to-

tal number of speech frames, Nnsp is the total

number of non-speech frames while β =
Nnsp
Nsp

weights the contributions of false alarm and dele-

tions. This weighting is necessary to avoid that

results are biased due to the unbalanced distribu-

tion of speech and non-speech frames in the data

(see Table 2). The SAD metric is equivalent to

the Equal Error Rate in most of the cases. For

a deeper understanding of the evaluation results,

wherever possible the scores are reported in a dis-

aggregated fashion, differentiating among cases in

which there are noises in the targeted room, in-

terferes (noise or speech) in another room, back-

ground noises.

The evaluation protocol includes also a set of

metrics for the source localization tasks. Since

none of the participants provided results on this

problem they are not fully described here. They

comprises: the average (bias) and RMS errors for

fine and gross errors respectively as well as the ra-

tio between the two categories (percentage of cor-

rect localization estimates).

It is worth mentioning that in an ASR perspec-

tive false alarms are less problematic than deletion

as the rejection model offers an effective and prac-

tical way to deal with them. Therefore, it could

make sense to give Deletions a higher weight in

the overall SAD error rate computation. However,

in the addressed context false alarms include also

correct event associated to wrong rooms: this case

would be detrimental for ASR and dialogue en-

gines. This is the reason why the two rates are

equally weighted.

4.2 Participants

As reported in Table 3, two laboratories partic-

ipated in the evaluation, focusing on event de-

tection and room selection only, and both par-

ticipants submitted more than one system. The

Spoken Language Systems Laboratory of the

Instituto de Engenharia de Sistemas e Com-

putadores Investigao e Desenvolvimento in Lis-

bon (INESC-ID L2F) submitted three systems

based on Multi-Layer Perceptron (MLP) and Ma-

jor Voting Fusion (MVF) of the multiple chan-

nels. The three systems differ in the way

the room selection is performed: MVF-MLP-

NRS does not select the room while MVF-MLP-

MRS and MVF-MLP-RRS adopt two slightly

different procedures. The Multimedia Assis-

tive Technology Laboratory - Dipartimento di In-

gegneria dell’Informazione of the Universitá Po-

litecnica delle Marche (MATeLab-DII) presented

two approaches based on Deep Belief Networks

(DBN) and Bidirection Long Short-Term Mem-
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ory Recurrent Neural Networks (BLSTM) respec-

tively. It must be mentioned that, although no

SASLODOM specific data were used for system

tuning, neither simulated nor real, the MLP mod-

els used by INESC-ID L2F have been adapted on

a rather large set of in-domain DIRHA data, not

available to the other participant, which could give

a significant improvement in the performance.

4.3 Results

Table 4 reports the evaluation results on the sim-

ulated corpus. Besides the official metrics the ta-

ble reports the results also in terms of event-based

metrics. The best performing system is “MVF-

MLP-NRS” from INESC-ID L2F which achieves

a 7.7% error rate at frame level. However, this

is obtained allowing events to occur in more than

one room, which results in a considerable increase

of false alarms and a significant reduction in the

event-based metrics. In particular, the false alarm

rate doubles in presence of events outside the tar-

get room. The reason why “MVF-MLP-NRS”

performs better than the other two systems could

be that the room selection scheme fails in several

cases, in particular when noises outside the room

occur. This fact confirms that the room selection

problem is not a trivial task at all. In general all

system submitted by INESC-ID L2F handles prop-

erly the background noise, while a performance

degradation is observed when events occurs out-

side the room. Note that the second best ap-

proach, which achieves a 9.5% overall error rate,

has a very low precision despite acceptable false

alarm and deletion rates: the reason could be in

the generation of several short events. For both

MATeLab-DII solutions background noise deter-

mines an increase of deletions (features are not

observable) while noise events outside the rooms

results in a higher false alarm rate (events are de-

tected in the wrong room). It must be kept in mind

that DNN solutions are penalized by the limited

amount of training material.

4.4 Real Data

Table 5 reports the results on the real data. As

expected the performance of the best systems is

much higher than on the simulated data, thanks

to the reduced amount of background noise and

the absence of interfering sources. Furthermore,

in the real data set events never overlap in time.

In this case the best approaches are “MVF-MLP-

MRS” and “MVF-MLP-RRS” of INESC-ID L2F

which outperform the solution without room se-

lection. Given the easier conditions the room se-

lection behaves properly and this provides a signif-

icant improvement to the performance. The meth-

ods proposed by MATeLab-DII performs consid-

erably worse than on the simulated data, proba-

bly due to the limited amount of training material

available.

5 Conclusions

The SASLODOM task at EVALITA 2014 ad-

dressed the problem of detecting and localiz-

ing speech event in a multi-room domestic sce-

nario. The evaluation, based on real and sim-

ulated acoustic corpora collected within the EU

DIRHA project, attracted two participants who fo-

cused on the SAD subtask. The submitted sys-

tems implement state of the art MLP and DNN

solutions for the speech/non-speech classification

task. The results confirm that the domestic sce-

nario is extremely challenging and specific solu-

tions based on multi-channel processing and room

selection/localization are crucial to obtain satisfac-

tory performance. In terms of absolute numbers, a

very good accuracy is achieved on the real data.

Acknowledgements

This work has partially received funding from

the European Union’s 7th Framework Programme

(FP7/2007-2013), grant agreement n. 288121-

DIRHA.

144



Site ID Full Name Task Runs

INESC-
ID L2F

Spoken Language Systems Laboratory
Instituto de Engenharia de Sistemas e Computa-
dores Investigao e Desenvolvimento
Lisboa, Portugal

SAD 3

MATeLab-
DII

Multimedia Assistive Technology Laboratory
Dipartimento di Ingegneria dell’Informazione
Universitá Politecnica delle Marche
Ancona, Italy

SAD 2

Table 3: The participants of the SASLODOM task.

Lab System SAD FA Del P R Fscore

INESC-ID L2F

MVF-MLP-MRS 14.4 3.6 25.2 82.3 75.1 78.5

MVF-MLP-RRS Sys2 11.8 5.4 18.2 73.4 79.2 76.2

MVF-MLP-NRS Sys3 7.7 12.0 3.4 53.5 95.9 68.7

MATeLab-DII
BLSTM 12.1 11.9 12.3 30.6 98.6 46.5

DBN 9.5 8.7 10.3 25.3 99.5 40.4

Table 4: Evaluation results on the simulated data.

Lab System SAD FA Del P R Fscore

INESC-ID L2F

MVF-MLP-MRS1 2.0 2.7 1.3 100 96.2 98.1

MVF-MLP-RRS 2.0 2.7 1.3 100 96.2 98.1

MVF-MLP-NRS 13.7 26.1 1.3 49.2 96.2 65.1

MATeLab-DII
BLSTM 19.7 33.7 5.6 22.5 98.7 36.7

DBN 12.2 9.7 14.7 28.5 98.7 44.2

Table 5: Evaluation results on the real data.

References

Shoko Araki, Tomohiro Nakatani, Hiroshi Sawada, and
Shoji Makino. 2009. Stereo source separation and
source counting with MAP estimation with Dirich-
let prior considering spatial aliasing problem. In
Proc. of the International Conference on Indepen-
dent Component Analysis and Signal Separation.

L. Armani, M. Matassoni, M. Omologo, and P. Svaizer.
2003. Use of a CSP-based voice activity detector for
distant-talking ASR. In EUROSPEECH.

M. Arulampalam and S. Maskell. 2002. A tutorial
on particle filters for on-line nonlinear/non-gaussian
bayesian tracking. IEEE Transactions on Signal
Processing, 50(2), February.

R.L. Bouquin-Jeannes and G. Faucon. 1995. Study of
a voice activity detector and its influence on a noise
reduction system. Speech Communication, 16.

M. Brandstein and D. Ward. 2001. Microphone Ar-
rays. Springer-Verlag.

A. Brutti and F. Nesta. 2013. Tracking of multidi-
mensional tdoa for multiple sources with distributed
microphone pairs. Computer Speech And Language,
27(3).

R Cai, L. Lu, A. Hanjalic, H. Zhang, and L. Cai. 2006.
A flexible framework for key audio effects detection
and auditory context inference. IEEE Trans. on Au-
dio, Speech and Language Processing, 14(3).

W. Chu, W. Cheng, J. Wu, and J. Hsu. 2004. A study of
semantic context detection by using SVM and GMM
approache. In Proc. of IEEE International Confer-
ence on Multimedia and Expo.

L. Cristoforetti, M. Ravanelli, M. Omologo, A. Sosi,
A. Abad, M. Hagmueller, and P. Maragos. 2014.
The DIRHA simulated corpus. In LREC.

R. DeMori. 1998. Spoken Dialogues with Computers.
Academic Press, London. Chapter 2.

E. Di Claudio, R. Parisi, and G. Orlandi. 2000. Multi-
source localization in reverberant environments by
root-music and clustering. In Proc. of IEEE confer-
ence on Acoustics, Speech, and Signal Processing.

J. Dines, J. Vepa, and T. Hain. 2006. The segmen-
tation of multichannel meeting recordings for au-
tomatic speech recognition. In Proc. Int. Conf. on
Speech Communication and Technology.

M. Fallon. 2008. Multi target acoustic source track-
ing with an unknown and time varying number of
targets. In Hands-Free Speech Communication and
Microphone Arrays, 2008. HSCMA 2008, May.

145



A Farina. 2000. Simultaneous measurement of im-
pulse response and distortion with a swept-sine tech-
nique. In 110th AES Convention, February.

G. Guo and S. Li. 2003. Content-based audio clas-
sification and retrieval by support vector machines.
IEEE Trans. on Neural Networks, 14(1).

H. H. Sawada, R. Mukai, and S. Makino. 2003. Direc-
tion of arrival estimation for multiple source signals
using independent component analysis. In Proceed-
ings of ISSPA.

Y. Huang and J. Benesty. 2004. Audio Signal Pro-
cessing for Next-Generation Multimedia Communi-
cation Systems. Kluwer Academic Publishers.

J.C. Junqua, B. Mak, and B. Reaves. 1994. A robust
algorithm for word boundary detection in the pres-
ence of noise. IEEE Trans. on Speech and Audio
Processing, 2(3).

C. H. Knapp and G. C. Carter. 1976. The general-
ized correlation method for estimation of time delay.
In Acoustics, Speech, and Signal Processing, IEEE
Transactions on, volume 24, pages 320–327.

G. Lathoud and J.M. Odobez. 2007. Short-term
spatio-temporal clustering applied to multiple mov-
ing speakers. IEEE Trans. on Audio, Speech and
Language Processing, 15(5), July.

Y. Lee, T.S. Wada, and Biing-Hwang Juang. 2010.
Multiple acoustic source localization based on mul-
tiple hypotheses testing using particle approach. In
IEEE International Conference on Acoustics Speech
and Signal Processing.

E Lehman and A. Johansson. 2007. Particle filter
with integrated voice activity detection for acoustic
source tracking. EURASIP Journal on Applied Sig-
nal Processing.

B. Loesch, S. Uhlich, and B. Yang. 2009. Multidimen-
sional localization of multiple sound sources using
frequency domain ICA and an extended state coher-
ence transform. Proceedings of IEEE Workshop on
Statistical Signal Processing.

D. Macho, J. Padrell, A. Adad, J. McDonough,
M. Wolfel, A. Brutti, M. Omologo, G. Potamianos,
S. Chu, U. Klee, P. Svaizer, C. Nadeu, and J. Her-
nando. 2005. Automatic speech activity detection,
source localization and speech recognition on the
chil seminar corpus. In Proc. of IEEE International
Conference on Multimedia and Expo.

F. Nesta and M. Omologo. 2011. Generalized State
Coherence Transform for multidimensional TDOA
estimation of multiple sources. Audio, Speech, and
Language Processing, IEEE Transactions on.

T.V. Pham, M. Stadtschnitzer, Pernkopf F., and Kubin
G. 2008. Voice activity detection algorithms using
subband power distance feature for noisy environ-
ments. In Proc. of Interspeech.

J. Portelo, M. Bugalho, I. Trancoso, J. Neto, A. Abad,
and A. Serralheiro. 2008. Non-speech audio event
detection. In Proc. IEEE International Conference
on Acoustics, Speech and Signal Processing.

J. Ramirez, J.C. Segura, C. Benitez, A. De la Torre, and
A. Rubio. 2005. An effective subband osf-based
vad with noise reduction for robust speech recogni-
tion. IEEE Trans. on Speech and Audio Processing,
13(6), Nov.

M. Ravanelli, A. Sosi, M. Omologo, and Svaizer
P. 2012. Impulse response estimation for robust
speech recognition in a reverberant environment. In
EUSIPCO.

A. Sehr, R. Maas, and W. Kellermann. 2010. Rever-
beration model-based decoding in the logmelspec
domain for robust distant-talking speech recogni-
tion. IEEE Trans. on Audio, Speech, and Language
Processing, 18(7):1676–1691.

J. W. Shin, J.H. Chang, and N. S. Kim. 2010. Voice ac-
tivity detection based on statistical models and ma-
chine learning approaches. Computer Speech and
Language, page 515=530.

I. Trancoso, J. Portelo, M. Bugalho, J. da Silva Neto,
and A. Serralheiro. 2009. Training audio events
detectors with a sound effects corpus. In Proc. of
Interspeech.

J Vermaak and A. Blake. 2001. Nonlinear ltering for
speaker tracking in noisy and reverberant environ-
ments. In IEEE Intern. Conf. on Acoustics, Speech
and Signal Processing.

M. Wolf and C. Nadeu. 2013. Channel selection
measures for multi-microphone speech recognition.
Speech Communication.

M. Wölfel and J. McDonough. 2009. Distant speech
recognition. Wiley.

S.N. Wrigley, G.J. Brown, V. Wan, and S. Renals.
2005. Speech and crosstalk detection in multichan-
nel audio. IEEE Trans. on Speech and Audio Pro-
cessing, 13(1):84–91, Jan.

X.L. Zhang and J. Wu. 2013. Deep belief networks
based voice activity detection. IEEE Trans. on Au-
dio, Speech, and Language Processing, 21(4):679–
710, April.

146




