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Abstract

English. Several Voice or Speaker Activ-
ity Detection (VAD) systems exist in liter-
ature. They are indeed a fundamental part
of complex systems that deals with speech
processing. In this work the authors ex-
ploit neural network based VAD to address
the speaker activity detection in a multi-
room domestic scenario. The goal is to
detect the voice activity in each of the two
target rooms in presence of other sounds
and speeches occurring in other rooms and
outside. A large dataset recorded in a
smart-home is provided and interesting re-
sults are obtained.

Italiano. Un rilevatore di attività voca-
le (Voice Activity Detector, VAD) costitui-
sce una delle parti fondamentali di siste-
mi più complessi che operano con segnali
vocali. Il presente lavoro applica VAD ba-
sati su reti neurali per il rilevamento del
parlato in uno scenario domestico multi-
microfono. Lo scopo è quello di rilevare
l’attività vocale presente nelle due stan-
ze di riferimento in presenza di altri suo-
ni e parlatori in altre stanze o all’esterno.
Le prestazioni sono state valutate su un
ampio dataset ed i risultati ottenuti sono
interessanti.

1 Introduction
Voice Activity Detection (VAD) is a non-trivial
task representing one of the fundamental steps
of many complex systems like Automatic Speech
Recognition (ASR) (Rabiner and Juang, 1993).
This work concerns the development and the eval-
uation of advanced VADs applied in domestic en-
vironments1 (Principi et al., 2013). A large dataset
is provided by the DIRHA EU project and it is

1The proposed systems are currently under development.

composed of several scenes recorded using 40 mi-
crophones installed in five rooms of a smart-home
(Cristoforetti et al., 2014). The approaches pre-
sented hereby are based on machine learning tech-
niques, in particular, the first approach exploits
the Deep Belief Network (DBN), a neural network
obtained by stacking several Restricted Bolzmann
Machines (RBMs) whilst the second approach is
based on a bidirectional Long Short-Term Mem-
ory (LSTM) recurrent neural network. The pro-
posed VADs at their current development stage
have been submitted and their performance have
been assessed at the Speech Activity detection and
Speaker LOcalization in DOMestic environments
(SASLODOM) task, part of EVALITA 20142.

The reminder of this technical report is struc-
tured as follows. A brief overview of the task
dataset and an overall description of the proposed
systems is given in the next two Sections. Section
4 describes the experimental setup while Section
5 shows the obtained results and Section 6 con-
cludes the article.

2 SASLODOM 2014 dataset
The dataset provided by the DIRHA project refers
to an apartment monitored by 40 microphones in-
stalled on the walls and the ceiling of its five rooms
(cf. Figure 1). The target rooms in which the
speech activity has to be detected is the kitchen
(top-left) and the livingroom (bottom-left). The
dataset is composed of two kind of sets named
Simulated and Real. The first one is composed of
80 scenes 60 seconds long and they consist of a set
of utterances and other acoustic events, including
a variety of background noises, produced in differ-
ent rooms and positions. The Real dataset is com-
posed of 22 total scenes having different durations.
They are composed of moving speaker utterances
and system audio messages played through a ceil-
ing loudspeaker. In these scenes the background

2http://www.evalita.it/2014
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noise is low and the speakers are located only in
the kitchen and livingroom.

Figure 1: Layout of the experimental set-up for
simulated data.

3 Overall description
The overall block scheme of the proposed ap-
proaches is depicted in Figure 2. The acquired
input audio signals, coming from one or more mi-
crophones, is fed to the feature extraction block
which aims to transform the raw audio data into
a well-defined feature space (cf. Section 3.1).
The feature matrix is then used as input for
the speech/non-speech classifier. Finally a post-
processing stage leads to the final decision.

3.1 Feature Extraction
Different types of features are extracted from raw
audio data after down-sampling it to 16 kHz. The
feature sets are normalised following the min-max
method:

x̄l = xl−xmin
xmax−xmin

, (1)

where

xmin = min
1≤l≤L

(xl), xmax = max
1≤l≤L

(xl), (2)

xl is an element of the feature vector at the frame
index l and L is the total number of frame in
the dataset. The complete list is shown in Table
1 whilst, the next sections provide a detailed de-
scription.

3.1.1 Mel-Frequency Cepstral Coefficient
The MFCC (Davis and Mermelstein, 1980) is a
well-known set of features widely employed in au-
dio applications (e.g., speech, music, etc.). Ac-
cordingly with HTK target kind (Young et al.,
1997), two set of MFCC-based feature have been
extracted: MFCC12 0 D A and MFCC12 0 D Z.

Feature
Extraction
stage

mic1

micn

mic2
DBN
or

BLSTM
Neural
Network

Post-
processing
stage

out 1

out 2

Figure 2: General block scheme of the proposed
VADs.

Name # features
MFCC12 0 D Z * 26
MFCC12 0 D A * 39

EVM wH 1
PITCH * 1
WCLPE 24

RASTAPLP 0 D A * 54

Table 1: List of features and their dimensionality.
The * indicates that the features are extracted us-
ing openSMILE toolkit (Eyben et al., 2013).

The former is composed of 13 cepstral coeffi-
cients, 0-12, plus their first and second derivatives,
∆ and ∆∆ whilst the latter differs in the features
mean normalisation and in the absence of the sec-
ond order derivative. Both are extracted using a
frame size of 25 ms at a frame rate of 100 fps.

3.1.2 Envelope-Variance measure
This feature relies on the signal intensity envelope
smoothing introduced by the reverberation, thus,
the dynamic range of a reverberated signal may be
reduced (Houtgast and Steeneken, 1985). The ex-
traction process have been slightly modified in or-
der to achieve a temporal evolution. The original
version (Wolf and Nadeu, 2014) defines a set of
sub-band envelopes as the time sequences of non-
linearly compressed filter-bank energies (FBE).
Similarly to MFCC computation, the speech sig-
nal frame energies is computed and the mean value
is subtracted in the log domain from each sub-
band:

x̂(k, l) = exp[log(x(k, l))− µx(k)], (3)

where x(k, l) is the sub-band time sequence, k is
the band index, l is the frame index and µx(k)
is the k-th band mean value estimated along the
entire speech sub-band signal. The variance of a
compressed version of Eq. (3) is obtained as fol-
low:

V (k) = var[x̂(k, l)1/3]. (4)

To obtain a time-varying version of Eq. (4), we
compute the variance using a window W shifted
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along each sub-band time sequence:

EVM(k, l) = var[x̂(k,m)1/3], (5)

where the variance is calculated considering a por-
tion of x̂(k,m) identified by −W

2 + l ≤ m ≤
W
2 + l. Finally, a hard weighting function is ap-

plied to emphasise the voiceband frequencies and
to discard the others contents. We use p = 40 mel
sub-bands and a windows size of 400 ms leading
to the EVM wH set.

3.1.3 Pitch
The pitch feature is extracted accordingly to the
Sub-Harmonic-Summation (SHS) method (Her-
mes, 1988). It computes Nf shifts of the input
spectrum along the log-frequency axis, each of
them is scaled due to a compression factor and
summed up leading to a sub-harmonic summation
spectrum. Standard peak picking and a quadratic
curve fitting interpolation are applied to identify
the F0 value. They are extracted using a frame
size of 50 ms sampled every 10 ms.

3.1.4 RASTA-PLP
This feature set is the standard RASTA-PLP set
(Hermansky, 1990) composed of 18 cepstral coef-
ficients including the 0-th one plus their first and
second derivatives. They are extracted using a
frame size of 25 ms sampled every 10 ms.

3.1.5 WC-LPE Feature
The Wavelet Coefficient (WC) and Linear Predic-
tion Errore (LPE) feature set is based on a sub-
band multi-resolution representation due to the ex-
ploitation of the Discrete Wavelet Transformation
of the input. A set of Linear Prediction Error
Filters (LPEFs) is then applied to each sub-band
in order to extract the Forward Prediction Errors
(FPE). The latter, the WCs and their first average
derivatives constitute the feature set presented in
(Marchi et al., 2014). To guarantee a frame align-
ment with respect to other feature sets, the refer-
ence frequency has been set to 100 Hz.

3.2 Deep Belief Network
The DBN is well-defined in (Deng, 2012) as a
probabilistic generative models composed of mul-
tiple layers of stochastic, hidden variables. The
top two layers have undirected, symmetric con-
nections between them. The lower layers receive
top-down, directed connections from the layer
above. A DBN is built by a stack of Restricted

Hidden
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v1 vJ

b

a

wij

Figure 3: Restricted Boltzmann Machine.

Boltzmann Machines (RBMs) and the interest in
this generative model began to increase since the
introduction of an efficient layer-by-layer unsuper-
vised training algorithm, also called pre-training
(Hinton et al., 2006). DBNs are typically used
to initialise the weights of a Multi-Layer Percep-
tron (MLP) neural network, especially when the
MLP is composed of many layers (i.e., deep neu-
ral network, DNN). Following this initialisation, a
standard back-propagation fine-tunes the network
leading to much better results than that achieved
by randomly initialise the MLP. When DBN in ex-
ploited for initialisation of a DNN, the obtained
network is called DBN-DNN.

RBMs are composed of one layer of Bernoulli
stochastic hidden units h and one layer of
Bernoulli or Gaussian stochastic visible units v,
where h and v are the vector of hidden and visible
unit values. With respect to Boltzmann Machines,
RBMs have not hidden-to-hidden and visible-to-
visible connections. Figure 3 shows a RBM with
I visible units and J hidden units, wij indicates
the weights between i-th visible unit vi and j-th
hidden unit hj , and bi and aj are respectively the
bias terms for visible and hidden layers. Follow-
ing (Hinton, 2010), a RBM can be easily trained
by means of Contrastive Divergence (CD-1) algo-
rithm which allows to compute the approximation
of the gradient of the log likelihood log p(v; θ),
where θ is the model parameters, by exploiting a
full step of the Gibbs sampling method. A full step
consists in sampling h0 from v0, then sampling v1
from h0 and, finally sampling h1 from v1. Hence,
the weights update rule for the RBM is:

∆wij = ε[〈v1h1〉 − 〈v0h0〉], (6)

where ε is the learning rate and the vector of visi-
ble units v0 are initialised using the input data.

In the stacking procedure, the RBMs are trained
using the CD-1 algorithm layer by layer leading to
a DBN as shown in Figure 4. Firstly RBM1 is pre-

155



Visible

Hidden1

Hidden2

Hidden3

RBM1

RBM2

RBM3{
{
{

Figure 4: Deep Belief Network obtained by stack-
ing three RBMs.

trained, then the hidden unit activation probabil-
ities of RBM1 became the visible units of RBM2

and the pre-training algorithm is applied to RBM2.
Finally the hidden unit activation probabilities of
RBM2 became the visible units of RBM3 which
is pre-trained. This process proceeds iteratively
for each layer in the network. It is important to
note that this training procedure is unsupervised,
thus, it does not require the targets or labels knowl-
edge. For classification tasks, the pre-training is
followed by a supervised training algorithm (e.g.,
back-propagation) which, on the contrary, exploits
the targets to fine-tune the network weights.

3.3 Bidirectional LSTM-RNN

A BLSTM-RNN is a recurrent neural network
in which the usual non-linear neurons (i.e., sig-
moid function) are replaced by the long short-term
memory blocks.

Forget
Gate

Output
Gate

Input

Input
Gate

•

•

•

1.0

Output

Memory
Cell

Figure 5: Long Short-Term Memory block.

The LSTM block is composed of one or more
self connected linear memory cells and three mul-
tiplicative gates, as shown in Figure 5. The mem-
ory cell maintains the internal state for a long time

through a constant weighted connection (i.e., 1.0).
The content of the memory cell is controlled by
the multiplicative input, output and forget gates
which act respectively as the memory write, read
and reset operations. More details can be found
in (Hochreiter and Schmidhuber, 1997; Graves,
2012).

The recurrent nature of the network allows a
kind of memory in the network internal state which
is exploited to compute the output of the network.
To deal with the future context, an elegant solution
is to duplicate the hidden layers and connect them
to the same input and output. The input values
and corresponding output targets are thus given
in a forward and backward direction. This net-
work architecture is called Bidirectional LSTM-
RNN (BLSTM-RNN).

4 Experimental Setup
The given dataset has been divided as provided by
the SASLODOM 2014 organisers:
• Development Set: 40 scenes from the Simu-

lated set and 12 scenes from the Real set.

• Test Set: 40 scenes form the Simulated set
and 10 scenes from the Real set.

The Test Set has been provided to the participants
at the end of the development phase in order to
evaluate the performance, hence the feature selec-
tion, the network parameters identification and the
post-processing variables tuning have been com-
puted by means of a 10-fold cross validation over
the Development Set.

4.1 DBN-VAD
The proposed DBN-VAD (cf. Figure 2) has two
different configurations. In particular, the feature
set and the network topology are different due
to the diverse nature of the Simulated and Real
sets. The feature set employed with the simulated
dataset is composed of 106 coefficients/frame for
each microphone: MFCC12 0 D Z, EVM wH,
PITCH, WC-LPE and RASTAPLP 0 D A. The
network has 212 input units, two hidden layers of,
respectively, 20 and 10 units and an output layer
of two units, one for each target rooms. We refer
to this configuration as DBN-VADS . On the other
hand, both the feature set and the network size for
the real dataset are smaller: 27 coefficients/frame
MFCC12 0 D Z and PITCH, and 57 inputs units,
two hidden layers of 10 and 5 units and two out-
put units. We refer to this configuration as DBN-
VADR.
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Both the configurations exploits two micro-
phones installed on the kitchen wall (i.e., K2L)
and on the livingroom wall (i.e., L1C). The choice
of these two microphones relies on their position
(cf. Figure 1) and also as a result of intensive tests
conducted on several microphone pairs.

The DBN-VADS|R pre-training consists in
1000 iterations using a mini-batch size of 100
frames and a step-ratio of 0.1. The learning rate is
obtained dividing the step-ratio by the size of the
training set leading to a value close to 4 × 10−7.
The fine-tuning training has the same parameters.

4.2 BLSTM-VAD

The second proposed VAD is BLSTM-based (cf.
Figure 2) and exploits the two microphones used
with the DBN-VAD (i.e., K2L and L1C). This
VAD employs a different feature set composed of
MFCC12 0 D A, PITCH and WC-LPE leading to
a total feature space of 64 coefficients per frame
per microphone. The final network topology is
composed of four hidden layers (i.e., two for each
direction due to bi-directionality) with 40 and 20
LSTM units for each direction. The input layer
has 128 units while the output layer has only one
unit. Indeed, for this VAD approach, better perfor-
mance has been achieved using one network for
each room.

For BLSTM-VAD training, the CURRENNT
toolkit (Weninger et al., 2014) is used. In par-
ticular, supervised learning with early stopping is
used. Standard gradient descend with back prop-
agation of the output errors is used to iteratively
update the network weights. The latter are initial-
ized by a random Gaussian distribution with mean
0 and standard deviation 0.1.

4.3 Post-processing

A post-processing of the network output is needed
in order to handle slow transition from speech to
non-speech. This technique is commonly named
hangover and a number of different implementa-
tion have been developed. The simplest imple-
mentation, used in this work, exploits a counter.
In particular, a threshold value is fixed and if at
least two consecutive network outputs are above
the threshold, the counter is reset to a predefined
value (equal to 8). On the contrary, when the net-
work output is below the threshold, the counter is
decreased by 1 and the actual frame is classified as
non-speech only if the counter value is zero.

5 Results

The result published by SASLODOM 2014 organ-
isers are shown in this section.

5.1 Performance metrics
The metrics used to assess the VAD performance
are:
• Deletion Error Rate (DER): number of miss-

ing detection over all speech frames.

• False Alarm Rate (FAR): number of false de-
tection over all non-speech frames.

• Overall Speaker Activity Detection error
(SAD): global metric defined as:

SAD =
Nfa + βNdel

Nnsp + βNsp
, (7)

whereNdel,Nfa are the total number of dele-
tions and false alarms respectively, Nsp and
Nnsp are the total number of speech and non-
speech frames. The term β =

Nnsp

Nsp
acts as

regulator term for the unbalance of the class
non-speech with respect to the speech one.

Table 2 shows the performance achieved by the
proposed VADs with respect to the Test Set. The
proposed VADs at their current development stage
are characterised by moderate performance with
respect to the Real dataset. This fact is due to the
raw approach that authors decided to undertake as
first step. In particular, the data-driven nature of
our VADs does not exploit higher level informa-
tion to finalise the decision. For instance it could
be possible to exploit the envelope-variance mea-
sure (cf. Eq. (4)) to perform a channel selection
and hence further post-processing the network de-
cisions. This solution would reasonably improve
the performance on Real dataset. Indeed, the ab-
sence of noise in its scenes leads to a high ac-
curacy of the channel selection measure. Perfor-
mance against the Simulated data are significantly
better due to the grater dimension with respect to
the Real data.

6 Conclusion

The proposed VADs exploit DBN-DNN and
BLSTM-RNN neural networks in order to detect
the speaker activity in a multi-room scenario. In-
deed, the task goal is the detection of when and
where a human is talking with respect to target
rooms. Hence, the system is required to be robust
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VAD
Simulated data Real data

DER (%) FAR (%) SAD (%) DER (%) FAR (%) SAD (%)
DBN-VADS|R 10.3 8.7 9.5 14.7 9.7 12.2
BLSTM-VAD 12.3 11.9 12.1 5.6 33.7 19.7

Table 2: Result assessed against the Test Set.

and reliable in a noise environment and a multiple
speaker scenario. Furthermore, the VAD is also
required to identify in which room, kitchen or liv-
ingroom, the speaker is actually talking discard-
ing other speaker(s) in other room(s). The perfor-
mance of the proposed approaches have been as-
sessed on the SASLODOM-EVALITA 2014 task.
Further intensive test sessions focused to pre-
process the multiple microphone signals available
and to the evaluation of deeper networks represent
future efforts. Moreover, due to the so-called curse
of dimensionality, better performance are expected
by the exploitation of the whole DIRHA dataset.
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