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Abstract

English. This paper describes our par-
ticipation in the EVALITA 2014 Depen-
dency Parsing Task. In the 2011 edition
we compared the performance of Malt-
Parser with the one of an ensemble model,
participating with the latter. This year, we
have compared the results obtained by a
wide range of state-of-the-art parsing al-
gorithms (MaltParser, the ensemble model
made available by Mihai Surdeanu, MATE
parsers, TurboParser, ZPar). When evalu-
ated on the development set according to
the standard measure (i.e., Labeled Accu-
racy Score, LAS), three systems have ob-
tained results whose difference is not sta-
tistically significant. So we have decided
to submit the results of the three systems at
the official competition. In the final eval-
uation, our best system, when evaluated
according to LAS, ranked fourth (with a
score very close to the best systems), and,
when evaluated on the Stanford Depen-
dencies, ranked fifth. The efforts reported
in this paper are part of an investigation
on how simple it is to apply freely avail-
able state-of-the-art dependency parsers to
a new language/treebank.

Italiano. Questo articolo descrive la
partecipazione al Dependency Parsing
Task a EVALITA 2014. Nell’edizione 2011
avevamo confrontato le prestazioni di
MaltParser con un ensemble model, parte-
cipando con quest’ultimo. Quest’anno ab-
biamo confrontato i risultati ottenuti da un
insieme di algoritmi di parsing allo stato
dell’arte (MaltParser, l’ensemble model
di Mihai Surdeanu, i MATE parser, Tur-
boParser, ZPar). Valutati sul development
set in base alla misura standard (Labeled

Accuracy Score, LAS), tre sistemi hanno
ottenuto risultati le cui differenze non sono
statisticamente significativi. Cosı̀ abbi-
amo deciso di sottomettere i risultati dei
tre sistemi alla competizione. Nella valu-
tazione ufficiale, il nostro miglior sistema
è risultato quarto, valutato in base a LAS
(con un valore molto vicino a quello dei
migliori sistemi) ed è risultato quinto, va-
lutato in base alle Stanford Dependency.
Gli sforzi riportati in questo articolo sono
parte di un’indagine su quanto è facile
applicare analizzatori sintattici a dipen-
denza liberamente disponibili a una nuova
lingua / treebank.

1 Introduction

Recently, there has been an increasing interest in
dependency parsing, witnessed by the organisa-
tion of a number of shared tasks, e.g. Buchholz
and Marsi (2006), Nivre et al. (2007). Concerning
Italian, there have been tasks on dependency pars-
ing in all the editions of the EVALITA evaluation
campaign (Bosco et al., 2008; Bosco et al., 2009;
Bosco and Mazzei, 2011). In the 2014 edition,
the task on dependency parsing exploits the Ital-
ian Stanford Dependency Treebank (ISDT), a new
treebank featuring an annotation based on Stan-
ford Dependencies (de Marneffe and Manning,
2008).

This paper reports the efforts involved in apply-
ing several state-of-the-art dependency parsers for
comparing their performance and participating in
the EVALITA 2014 task on dependency parsing.
Apart from participating in the EVALITA 2014
task, a second motivation was to investigate how
simple is to apply freely available state-of-the-art
dependency parsers to a new language/treebank
following the instructions available together with
the code and possibly having a few interactions
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with the developers (Lavelli, 2014).
As in many other NLP fields, there are very few

comparative articles when the performance of dif-
ferent parsers is compared. Most of the papers
simply present the results of the newly proposed
approach and compare them with the results re-
ported in previous articles. In other cases, the pa-
pers are devoted to the application of the same tool
to different languages/treebanks.

It is important to stress that the comparison con-
cerns tools used more or less out of the box and
that the results cannot be used to compare specific
characteristics like: parsing algorithms, learning
systems, . . .

2 Description of the Systems

The choice of the parsers used in this study started
from the two we already applied at EVALITA
2011, i.e. MaltParser and the ensemble method
described by Surdeanu and Manning (2010). We
then identified a number of other dependency
parsers that in the last years have shown state-of-
the-art performance, that are freely available and
with the possibility of training on new treebanks.
The ones included in the preliminary comparison
reported in this paper are the MATE dependency
parsers, TurboParser, and ZPar. In the near fu-
ture, we plan to include other dependency parsers
in our comparison. We have not been able to ex-
ploit some of the dependency parsers because of
lack of time and some others because of differ-
ent reasons: they are not yet available online, they
lack documentation on how to train the parser on
new treebanks (the ClearNLP dependency parser),
they have limitations in the encoding of texts (in-
put texts only in ASCII and not in UTF-8; the Red-
shift dependency parser), . . .

MaltParser (Nivre et al., 2006) (version 1.8) im-
plements the transition-based approach to depen-
dency parsing, which has two essential compo-
nents:

• A nondeterministic transition system for
mapping sentences to dependency trees

• A classifier that predicts the next transition
for every possible system configuration

Given these two components, dependency parsing
can be performed as greedy deterministic search
through the transition system, guided by the clas-
sifier. With this technique, it is possible to per-

form parsing in linear time for projective depen-
dency trees and quadratic time for arbitrary (non-
projective) trees (Nivre, 2008). MaltParser in-
cludes different built-in transition systems, dif-
ferent classifiers and techniques for recovering
non-projective dependencies with strictly projec-
tive parsers.

The ensemble model made available by Mihai
Surdeanu (Surdeanu and Manning, 2010)1 imple-
ments a linear interpolation of several linear-time
parsing models (all based on MaltParser). In par-
ticular, it combines five different variants of Malt-
Parser (Nivre’s arc-standard left-to-right, Nivre’s
arc-eager left-to-right, Covington’s non projec-
tive left-to-right, Nivre’s arc-standard right-to-left,
Covington’s non projective right-to-left) as base
parsers. Each individual parser runs in its own
thread, which means that, if a sufficient number
of cores are available, the overall runtime is essen-
tially similar to a single MaltParser. The resulting
parser has state-of-the-art performance yet it re-
mains very fast.

The MATE tools2 include both a graph-based
parser (Bohnet, 2010) and a transition-based
parser (Bohnet and Nivre, 2012; Bohnet and
Kuhn, 2012). For the languages of the 2009
CoNLL Shared Task, the graph-based MATE
parser reached accuracy scores similar or above
the top performing systems with fast process-
ing. The speed improvement is obtained with
the use of Hash Kernels and parallel algorithms.
The transition-based MATE parser is a model that
takes into account complete structures as they be-
come available to rescore the elements of a beam,
combining the advantages of transition-based and
graph-based approaches.

TurboParser (Martins et al., 2013)3 (version
2.1) is a C++ package that implements graph-
based dependency parsing exploiting third-order
features.

ZPar (Zhang and Nivre, 2011) is a transition-
based parser implemented in C++. ZPar sup-
ports multiple languages and multiple grammar
formalisms. ZPar has been most heavily devel-
oped for Chinese and English, while it provides
generic support for other languages. It leverages
a global discriminative training and beam-search

1http://www.surdeanu.info/mihai/
ensemble/

2https://code.google.com/p/mate-tools/
3http://www.ark.cs.cmu.edu/

TurboParser/

16



collapsed and propagated
LAS P R F1

MATE stacking (TurboParser) 89.72 82.90 90.58 86.57
Ensemble (5 parsers) 89.72 82.64 90.34 86.32
ZPar 89.53 84.65 92.11 88.22
MATE stacking (transition-based) 89.02 82.09 89.77 85.76
TurboParser (model type=full) 88.76 83.32 90.71 86.86
TurboParser (model type=standard) 88.68 83.07 90.55 86.65
MATE graph-based 88.51 81.72 89.42 85.39
MATE transition-based 88.32 80.70 89.40 84.82
Ensemble (MaltParser v.1.8) 88.15 80.69 88.34 84.34
MaltParser (Covington non proj) 87.79 81.50 87.39 84.34
MaltParser (Nivre eager -PP head) 87.53 81.30 88.78 84.88
MaltParser (Nivre standard - MaltOptimizer) 86.35 81.17 89.04 84.92
Ensemble (MaltParser v.1.3) 86.27 78.57 86.28 82.24

Table 1: Results on the EVALITA 2014 development set without considering punctuation. The second
column reports the results in term of Labeled Attachment Score (LAS). The score is in bold if the differ-
ence with the following line is statistically significant. The three columns on the right show the results
in terms of Precision, Recall and F1 for the collapsed and propagated relations.

collapsed and propagated
LAS P R F1

MATE stacking (transition-based) 87.67 79.14 88.14 83.40
Ensemble (5 parsers) 87.53 78.28 88.09 82.90
MATE stacking (TurboParser) 87.37 79.13 87.97 83.31
MATE transition-based 87.07 78.72 87.16 82.73
MATE graph-based 86.91 78.74 87.97 83.10
ZPar 86.79 80.30 88.93 84.39
TurboParser (model type=full) 86.53 79.43 89.42 84.13
TurboParser (model type=standard) 86.45 79.65 89.32 84.21
Ensemble (MaltParser v.1.8) 85.94 76.30 86.38 81.03
MaltParser (Nivre eager -PP head) 85.82 78.47 86.06 82.09
Ensemble (MaltParser v.1.3) 85.06 76.36 84.74 80.33
MaltParser (Covington non proj) 84.94 77.24 82.97 80.00
MaltParser (Nivre standard - MaltOptimizer) 84.44 76.53 86.99 81.43

Table 2: Results on the EVALITA 2014 test set without considering punctuation. The second column
reports the results in term of Labeled Attachment Score (LAS). The score is in bold if the difference with
the following line is statistically significant. The three columns on the right show the results in terms of
Precision, Recall and F1 for the collapsed and propagated relations.

framework.

2.1 Experimental Settings
The level of interaction with the authors of the
parsers varied. In two cases (ensemble, Malt-
Parser), we have mainly exploited the experience
gained in previous editions of EVALITA. In the
case of the MATE parsers, we have had a few in-
teractions with the author who suggested the use
of some undocumented options. In the case of Tur-
boParser, we have simply used the parser as it is
after reading the available documentation. Con-
cerning ZPar, we have had a few interactions with
the authors who helped solving some issues.

As for the ensemble, at the beginning we re-

peated what we had already done at EVALITA
2011 (Lavelli, 2011), i.e. using the ensemble
as it is, simply exploiting the more accurate ex-
tended models for the base parsers. The results
were unsatisfactory, because the ensemble is based
on an old version of MaltParser (v.1.3) that per-
forms worse than the current version (v.1.8). So
we decided to apply the ensemble model both
to the output produced by the current version of
MaltParser and to the output produced by some
of the parsers used in this study. In the latter
case, we have used the output of the following
5 parsers: graph-based MATE parser, transition-
based MATE parser, TurboParser (full model),
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collapsed and propagated
LAS P R F1

Ensemble (5 parsers) 87.22 78.21 87.92 82.78
MATE stacking (transition-based) 86.99 78.42 87.70 82.80
MATE transition-based 86.47 78.08 87.11 82.35
ZPar 86.40 79.84 88.27 83.84
TurboParser (model type=full) 86.35 79.77 89.12 84.19
MATE graph-based 86.34 77.94 87.02 82.23
TurboParser (model type=standard) 86.32 79.50 89.39 84.16
MATE stacking (TurboParser) 85.87 76.79 86.43 81.32
Ensemble (MaltParser v.1.8) 85.87 76.59 86.58 81.28
MaltParser (Nivre eager -PP head) 85.66 78.28 86.89 82.36
MaltParser (Covington non proj) 84.98 77.24 83.24 80.13
Ensemble (MaltParser v.1.3) 84.75 75.52 83.98 79.52
MaltParser (Nivre standard - MaltOptimizer) 84.25 76.29 86.77 81.19

Table 3: Results on the EVALITA 2014 test set after training on the training set only (NO development
set) without considering punctuation. The second column reports the results in term of Labeled Attach-
ment Score (LAS). The score is in bold if the difference with the following line is statistically significant.
The three columns on the right show the results in terms of Precision, Recall and F1 for the collapsed
and propagated relations.

MaltParser (Nivre’s arc-eager, PP-head, left-to-
right), and MaltParser (Nivre’s arc-eager, PP-
head, right-to-left).

Concerning MaltParser, in addition to using
the best performing configurations at EVALITA
20114, we have used MaltOptimizer5 (Ballesteros
and Nivre, 2014) to identify the best configuration.
According to MaltOptimizer, the best configura-
tion is Nivre’s arc-standard. However, we have ob-
tained better results using the configurations used
in EVALITA 2011. We are currently investigating
this issue.

As for the MATE parsers, we have applied both
the graph-based parser and the transition-based
parser. Moreover, we have combined the graph-
based parser with the output of another parser
(both the transition-based parser and TurboParser)
using stacking. Stacking is a technique of integrat-
ing two parsers at learning time6, where one of the
parser generates features for the other.

Concerning ZPar, the main difficulty was the
fact that a lot of RAM is needed for processing
long sentences (i.e., sentences with more than 100
tokens need 70 GB of RAM). After some interac-
tions with the authors, we were able to understand
and fix this issue.

4Nivre’s arc-eager, PP-head, and Covington non projec-
tive.

5http://nil.fdi.ucm.es/maltoptimizer/
6Differently from what is done by the ensemble method

described above where the combination takes place only at
parsing time.

During the preparation of the participation in
the task, the experiments were performed using
the split provided by the organisers, i.e. training
on the training set and testing using the develop-
ment set.

When applying stacking, we have performed
10-fold cross validation of the first parser on the
training set, using the resulting output to provide
to the second parser the predictions used during
learning. During parsing the output of the first
parser (trained on the whole training set and ap-
plied to the development set) has been provided to
the second parser.

3 Results

In Table 1 we report the parser results on the de-
velopment set ranked according to decreasing La-
beled Accuracy Score (LAS), considering punctu-
ation. The score is in bold if the difference with
the following line is statistically significant7 (the
difference is significant only if p-value is less than
0.05). In the three columns on the right of the table
the results for the collapsed and propagated rela-
tions are shown (both the conversion and the eval-
uation are performed using scripts provided by the
organisers).

In Table 1 we have grouped together the parsers
if the differences between their results (in terms of

7To compute the statistical significance of the differences
between results, we have used MaltEval (Nilsson and Nivre,
2008).
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LAS) are not statistically significant. As it can be
seen, five clusters can be identified.

Note that the computation of the statistical sig-
nificance of the results was possible only for the
standard evaluation (LAS) but not for the evalua-
tion of the recognition of Stanford Dependencies.
This is obviously a strong limitation in the possi-
bility of analysing the results. We plan to investi-
gate if it is possible to perform such computation.

An obvious remark is that the ranking of the re-
sults according to LAS and according to the recog-
nition of Stanford Dependencies is different. This
made the choice of the parsers for the participation
difficult, given that the participants would have
been ranked based on both measures.

According to the results on the development
set, we decided to submit for the official evalu-
ation three models: ZPar, MATE stacking (Tur-
boParser), and the ensemble combining 5 of the
best parsers. For the official evaluation, the train-
ing was performed using both the training and the
development set. In Table 2. you may find the re-
sults of all the parsers used in this study (in italics
those submitted to the official evaluation). Com-
paring Table 1 and Table 2, it emerges that some
of the parsers show different behaviours between
the development and the test set. This calls for
an analysis to understand the reasons of such dif-
ference. The results of a preliminary analysis are
reported in Section 4.

The results obtained by the best system submit-
ted to the official evaluation are: 87.89 (LAS),
81.89/90.45/85.95 (P/R/F1). According to LAS,
our systems were ranked fourth (the ensemble
combining 5 of the best parsers), fifth (MATE
parser stacking based on TurboParser) and eighth
(ZPar). Evaluating using Stanford Dependencies
was different. The same systems were ranked
ninth, seventh, and fifth respectively. More details
about the task and the results obtained by the par-
ticipants are available in Bosco et al. (2014).

4 Discussion

We are currently analysing the results shown
above to understand how to further proceed in our
investigation. A general preliminary considera-
tion is that, as expected, approaches that combine
the results of different parsers perform better than
those based on a single parser model, usually with
the drawback of a bigger complexity.

The results shown in Tables 1 and 2 raise a few

questions.
The first question concern the fact that some of

the parsers (e.g., ZPar) show different behaviours
between the development and the test set. This is
still true even if we consider the clusters of where
the results are not statistically different. To inves-
tigate this issue we performed some experiments
training on the training set only (not using the de-
velopment set) and analysing the test set. These
results are reported in Table 3. The results show
that some parsers have different behaviours on the
development set and on the test set, even when
considering only the clustering performed taking
into account the statistical significance of the dif-
ference between different parsers’ performance.
This issue needs to be further investigated.

The second question concern the discrepancy
between the standard evaluation in terms of LAS
and the recognition of the Stanford dependencies
in terms of Precision, Recall and F1. For example,
the ensemble is our best scoring system accord-
ing to the standard evaluation, while is our worst
system when evaluated on the Stanford dependen-
cies. A crucial element to investigate this issue is
the possibility of computing the statistical signifi-
cance of the difference between the results of the
recognition of Stanford Dependencies.

5 Conclusions and Future Work

In the paper we have reported on work in progress
on the comparison between several state-of-the-
art dependency parsers on the Italian Stanford De-
pendency Treebank (ISDT) in the context of the
EVALITA 2014 dependency parsing task.

In the near future, we plan to widen the scope
of the comparison including more parsers and
analysing some unexpected behaviours emerged
from our experiments.

Finally, we will perform an analysis of the re-
sults obtained by the different parsers considering
not only their performance but also their behaviour
in terms of speed, CPU load at training and pars-
ing time, ease of use, licence agreement, . . .
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