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Abstract

English. We present the two systems used
by the UniTo group to participate to the
Evalita 2014 parsing tasks. In particular,
we describe the ensemble parser system
used for DPIE task and the parsing-by-
translation system used for the CLaP task.

Italiano. Presentiamo i due sistemi uti-
lizzati dal gruppo UniTo per partecipare
alla competizione sul parsing di Evalita
2014. Descriviamo il sistema di ensam-
ble parsing usato nel DPIE task e il sis-
tema basato su traduzione usato per parte-
cipare al CLaP task.

1 Introduction

In the last years a great attention has been de-
voted to the dependency formalisms and parsers
(Kiibler et al., 2009). As a consequence many
research lines follow new techniques in order to
improve the parsing performances, e.g. (Car-
reras, 2007; Surdeanu and Manning, 2010). How-
ever, the specific applicative scenario can draw a
clear playground where improvements can be ef-
fectively measured. The Evalita 2014 competition
on parsing set up two distinct parsing tasks: (1)
the Dependency Parsing for Information Extrac-
tion (DPIE) task, and (2) the Cross-language De-
pendency Parsing (CLaP) task.

The DPIE task is the “classical” dependency
parsing task for the evaluation of the parsing sys-
tems on the Italian language (Bosco and Mazzei,
2012). However, in contrast with the previous edi-
tions of the task, the DPIE task adopts the new
ISDT treebank (Bosco et al., 2013), which is based
on the stanford dependency annotation (de Marn-
effe and Manning, 2008b), and uses two distinct
evaluation measures: the first is the traditional
LAS (Labeled Attachment Score), the second is

21

related to the Information Extraction process and
is based on a subset of the dependency relations
inventory.

The CLaP task wants to test the utility of a stan-
dard cross-lingual annotation schema in order to
parse foreign languages. By using an universal
variant (McDonald et al., 2013) of the Italian ISDT
treebank (U-ISDT) as learnin set, one has to parse
sentences of several foreign languages.

In order to participate to both the tasks we de-
vised two distinct parsing systems. We partici-
pate to the DPIE task by reusing a very simple en-
samble parsing system (Mazzei and Bosco, 2012)
(Section 2), and we participate to the CLaP task
by designing a new cross-language parsing system
that uses an on-line translator as external knowl-
edge source (Section 3).

2 The DPIE task

The Dependency Parsing for Information Extrac-
tion (DPIE) is the main task of EVALITA 2014
competition on parsing. The focus is on standard
dependency parsing of Italian texts. The evalua-
tion is performed on two directions: the LAS (La-
belled Attachment Score) as well as a measure on
the collapsed propagated dependencies, i.e. on
simple transformations of a subset of the whole
dependency set, which usually are expressed in
form of triples (de Marneffe and Manning, 2008a).
In particular, the measure based on collapsed prop-
agated dependencies is designed to test the utility
of the dependency parsing with respect to the gen-
eral process of Information Extraction.

In order to participate to this task we decided to
reuse the system described in (Mazzei and Bosco,
2012), which follows two promising directions to-
wards the improvement of the performance of the
statistical dependency parsers. Indeed, some new
promising parsing algorithms use larger sets of
syntactic features, e.g. (McDonald and Pereira,
2006; Carreras, 2007), while others apply gen-



eral techniques fo combine together the results
of various parsers (Zeman and Zabokrtsky, 2005;
Sagae and Lavie, 2006; Hall et al., 2007; Attardi
and dell’Orletta, 2009; Surdeanu and Manning,
2010; Lavelli, 2012). We explored both these di-
rections in our participation to the DPIE task by
combining three state of the art statistical parsers.
The three parsers are the MATE! parser (Bohnet,
2010) (version 3.61), the DeSR? parser (Attardi,
2006) (version 1.4.3), the MALT? parser (Nivre
et al., 2006) (version 1.7.2). We combined these
three parsers by using two very simple voting al-
gorithms (Breiman, 1996; Zeman and Zabokrtsky,
2005), on the standard configurations for learning
and classification.

The MATE parser (Bohnet, 2009; Bohnet,
2010) is a development of the algorithms de-
scribed in (Carreras, 2007), and it basically adopts
the second order maximum spanning tree depen-
dency parsing algorithm. In particular, Bohnet ex-
ploits hash kernel, a new parallel parsing and fea-
ture extraction algorithm that improves the accu-
racy as well as the parsing speed (Bohnet, 2010).

The DeSR parser (Attardi, 2006) is a transition
(shift-reduce) dependency parser similar to (Ya-
mada and Matsumoto, 2003). It builds depen-
dency structures by scanning input sentences in
left-to-right and/or right-to-left direction. For each
step, the parser learns from the annotated depen-
dencies if to perform a shift or to create a depen-
dency between two adjacent tokens. DeSR can use
different set of rules and includes additional rules
to handle non-projective dependencies. The parser
can choose among several learning algorithms (e.g
Multi Layer Perceptron, Simple Vector Machine),
providing user-defined feature models.

The MALT parser (Nivre et al., 2006) im-
plements the transition-based approach to depen-
dency parsing too. In particular MALT has two
components: (1) a (non-deterministic) transition
system that maps sentences to dependency trees;
(2) a classifier that predicts the next transition for
every possible system configuration. MALT per-
forms a greedy deterministic search into the tran-
sition system guided by the classifier. In this way,
it is possible to perform parsing in linear time for
projective dependency trees and quadratic time for
arbitrary (non-projective) trees.

"http://code.google.com/p/mate-tools/

http://sites.google.com/site/desrparser/

‘http://maltparser.org/

22

2.1 The combination algorithms

We combine the three parsers by using two very
simple algorithms: COMI (Algorithm 1) and
COM2 (Algorithm 2), both implemented in the
PERL programming language. These algorithms
have been previously experimented in (Zeman and
Zabokrtsky, 2005) and in (Surdeanu and Manning,
2010).  The main idea of the COM1 algorithm

foreach sentence do
foreach word W in the sentence S do
if DepP2(W) == DepP3(W) then
‘ Dep-COM1(W) := DepP2(W)
else
‘ Dep-COM1(W) := DepP1(W)
end
end

end

Algorithm 1: The combination algorithm COM1,
that corresponds to the voting algorithm reported
in (Zeman and Zabokrtsky, 2005)

is to do a democratic voting among the parsers.
For each word in the sentence, the dependency
(the parent and the edge label) assigned to the
word by each parser is compared: if at least two
parsers assign the same dependency, the COM1 al-
gorithm selects that dependency. In the case that
each parser assigns a different dependency to the
word, the algorithm selects the dependency as-
signed by the best parser. As noted by (Zeman
and Zabokrtsky, 2005), who use the name voting
for COMI, this is the most logical decision if it
is possible to identify a priori the best parser, in
contrast to the more democratic random choice.

foreach sentence do
foreach word W in the sentence S do
if DepP2(W) == DepP3( W) then
‘ Dep-COM2(W) := DepP2(W)
else
‘ Dep-COM2(W) := DepP1(W)
end
end
if TREE-COM2(S) is corrupted then
‘ TREE-COM2(S) := TREE-P1(S)
end

end

Algorithm 2: The combination algorithm COM2,
that corresponds to the switching algorithm re-
ported in (Zeman and Zabokrtsky, 2005)



| MATE | DeSR | MALT | COM1 | COM2 |

DevSet | 89.65 | 86.19

86.26 89.60 89.65

TestSet | 87.05 | 84.15

84.61 87.21 87.05

Table 1: The LAS score for the MATE, DeSR and MALT parsers, their simple combinations COM1 and

COM2 on the development and test sets.

The COM2 algorithm is a simple variation of
the COM1. COM1 is a single word combination
algorithm that does not consider the whole depen-
dency structure. This means that incorrect depen-
dency trees can be produced by the COMI algo-
rithm: cycles and multiple roots can destroy the
treeness of the structure. The solution that we
adopt in the COM2 algorithm is quite naive: if the
tree produced by the COM1 algorithm for a sen-
tence is corrupted, then the COM?2 returns the tree
produced by the best parser. Again, similarly to
(Zeman and Zabokrtsky, 2005), who use the name
switching for COM2, this is the most logical deci-
sion when there is an emerging best parser from a
development data set.

2.2 Experimental Results

We applied our approach for parsing combination
in two stages. In the first stage we use the devel-
opment set to evaluate the best parser and in the
second stage we use the COM1 and COM2 algo-
rithms to parse the test set. For all the experiments
we used two machines. A powerful Linux work-
station, equipped with 16 cores, processors 2GHz,
and 128 GB ram has been used for the training of
the MATE and Malt parsers. Morever, we have
not been able to install DeSR on this machine,
so we use a virtual Linux workstation equipped
with a single processor 1GHz, and 2 GB ram has
been used DeSR. The MALT and DeSR parsers
accept as input the CONLL-07 format, that is the
format provided by the task organizers. In con-
trast, MATE accepts the CONLL-09 format: sim-
ple conversions scripts have been implemented to
manage this difference.

A first run was performed in order to evalu-
ate the best parser in the COM1 and COM2 al-
gorithms with respect to the LAS. We used the
ISDT training (file isdt_train.conll, 165,975
words) as training set and the ISDT development
(file : sdt_devel.conll, 12,578 words) as de-
velopment set. The first row in Table 1 shows the
results of the three parsers in this first experiment.
MATE parser outperforms the DeSR and MALT
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parsers of ~ 3% better. On the basis of this result,
we used MATE as our best parser in the combina-
tion algorithms (cf. Section 2.1).

COM1 and COM2 reach the score of 89.60%
and 89.65% respectively. So, on the development
set there is no improvement on the performance
of the best parser. The reason of this is evident
from table 2, that details the results of the three
parsers on the development set on the basis of their
agreements. The second row of this table show
that when DeSR == MALT! = MATE, the
combination algorithm gives the wrong selection
preferring the majority.

In a second run, we used the union of the train-
ing and development set as a whole training set
(files : isdt_train.conll,isdt_devel.conll) and
we used the blind file provided by the organizers
as test set (file : DPIFE Test_DS blind.conll,
9,442 words). The second row in Table 1 shows
the results of the three parsers in this second ex-
periment: the LAS values 87.21% and 87.05%,
produced by COMI1 and COM2, are the official
results for of our participation to the DPIE task.

There is a ~ 0.15% difference between the
COMI1 and COM2 results and in Table 3 we de-
tailed the results of the three parsers on the test
set. When the three parsers agree on the same
dependency (Table 3, first row), this happens on
~80.27% of the words, they have a very high LAS
score, i.e. 94.03%. In contrast to the development
set, DeSR and MALT parsers do better than the
MATE parser only when they agree on the same
dependency (Table 3, second row). The inspection
of the other rows in Table 3 shows that COM1 al-
gorithms has the best possible performance w.r.t.
the voting strategy. Finally, the fact that COM2
produces the same result of MATE shows that the
LAS improvement produces always a non-correct
tree in the final output.

In Table 4 we report the results of the system
with respect to the measure defined on the propa-
gated and collapsed dependencies. In contrast to
the LAS measure, here COM1 produces a worse
result than COM2. So, improvements in the LAS



| MATE | DeSR | MALT [ comM1 | COM2 |
DevSet || 84.8/92.0/88.2 | 80.7/89.2/84.7 | 81.0/89/0/84.8 || 85.2/91.2/88.1 | 84.8/92.0/88.2
TestSet || 80.5/90.0/85.0 | 76.9/86.7/81.5 | 76.8/86.6/81.4 || 80.9/88.0/84.3 | 80.5/90.0/85.0

Table 4: The collapsed and propagated dependency sore in terms of precison/recall/F-score for the col-
lapsed dependencies for the three parsers, their simple combinations (COM1 and COM2) on the devel-

opment and test sets.

%o %
MATE == DeSR == MALT | 81.8 MATE == DeSR == MALT | 80.28
95.4 94.03
MATE != DeSR == MALT | 4.9 MATE !'= DeSR == MALT || 5.34
43.5 39.8 40.7 41.9
MATE == DeSR = MALT || 48 MATE == DeSR != MALT | S5.11
70.9 13.1 62.2 194
MATE == MALT != DeSR || 5.0 MATE == MALT != DeSR | 5.25
70.0 15.6 67.4 17.6
MATE !'= DeSR = MALT || 3.6 MATE !'= DeSR = MALT || 4.03
46.6 10.9 15.5 35.9 15.9 17.8

Table 2: The detailed performances on the LAS
score of the three parsers and their simple combi-
nation on the ISDT development set. Note that we
are computing the scores with punctuation.

produces as drawback a decline with respect to this
measure.

3 The CLaP task

The Cross-language Dependency Parsing (CLaP)
is a pilot task focusing on cross-lingual transfer
parsing. In this subtask it is asked to learn from
the Italian Stanford Dependency Treebank anno-
tated in with the universal dependencies (file :
isdt_udl.conll), and to test on sentences of other
languages (McDonald et al., 2013). In particu-
lar, we decided to participate to the task on four
specific languages: German (DE), Espanol (ES),
French (FR) and Brazilian Portuguese (PT-BR).
For each language, the organizers provided a de-
velopment file.

In CLaP task we used only one parser, i.e. the
MALT parser. We decided to use this parser since
there is a related system, called MaltOptimizer
(Ballesteros and Nivre, 2012) (version 1.0.3), that
allows for a straight optimization of the various
parameters of the MALT parser. Indeed, our
strategy was to train the MALT parser on the
universal isdt by using the specific algorithm
and features which optimize the learning on the
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Table 3: The detailed performances on the LAS
score of the three parsers and their simple com-
bination on the ISDT test set. Note that we are
computing the scores with punctuation.

development set of the target language. Moreover,
in order to supply lexical information to the
parsing algorithm, we used Google translate
(https://translate.google.com) to
translate foreign words in Italian. In Figure 1 we
reported the workflow adopted in this task for
learning and parsing of the French language (it is
analogous for the other languages). The learning
stage is composed by five steps:

1. A script extracts the foreign words from the
development set

2. Google_translate translates the foreign words,
contained in one single file, into Italian.

3. A script recomposes the development set with
Italian words

4. MaltOptimizer uses the recomposed develop-
ment set in order to produce a configuration file
(algorithm and features).

5. The MALT parser uses the configuration file to
produce a parsing model file.

In a similar way, the parsing stage is composed by
five steps:

1. A script extracts the foreign words from the
test set.

2. Google_translate translates the foreign words,
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Figure 1: The workflow adopted fot the CLaP task
for the French language: the schema is identical
for the Spanish, German, Brazilian-Portoguese.

| DE | ES | FR | PT-BR

Baseline 1 | 60.23 | 67.72 | 66.74 | 66.12
Baseline 2 | 66.51 | 71.69 | 71.60 | 71.70
System 66.51 | 72.39 | 71.53 | 71.70

Table 5: The LAS score for CLaP task on the test
sets for German (DE), Espanol (ES), French (FR),
Brazilian-Portoguese (PT-BR) languages.

contained in one single file, into Italian.

3. A script recomposes the test set with Italian
words.

4. The MALT parser uses the parsing model to
parse the recomposed test set.

5. A script recomposes the parsing test set with
the foreign words.

In Table 5 we reported the results in terms of
LAS measure of the system together with two
baselines. The baseline 1 it has been produced
by training the MALT parser with the standard
configuration on the learning set obtained by the
union of the u-ISDT with the original develop-
ment set of the foreign language. The baseline
2 it has been produced by training the MALT
parser with the standard configuration on the
learning set obtained by the union of the u-ISDT
with the translated development set of the foreign
language. The results proves that our workflow
produces an improvement on the LAS measure
of 5 — 6% for each language. Comparing the
baselines, we can say that the improvements are
essentially by the translation process rather than
the optimization process.

MaltOptimizer
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4 Conclusions

In this paper we described the two systems used by
the UniTo group to participate to EVALITA 2014
parsing competition. The first, used in the DPIE
task, is a very simple ensamble parsing algorithm;
the second is a cross-language parsing algorithm
that uses an on-line translator as external knowl-
edge source.

In the DPIE task, we can see that the perfor-
mance of the ensamble system with respect to the
bast parser is quite neglectable, in contrast to the
results obtained in other competition (Mazzei and
Bosco, 2012). This result suggests that the perfor-
mance of the simple ensamble algorithms adopted
are highly sensitive from the leaning set adopted.

In the CLaP task, we can see that the perfor-
mance of the developed system outperforms the
baseline for all the four languages. This result
confirms the possibility to improve parsing per-
formances by using data developed for other lan-
guages.
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